ترغب بنشر مسار تعليمي؟ اضغط هنا

Shear viscosity of pseudo hard-spheres

79   0   0.0 ( 0 )
 نشر من قبل Faezeh Pousaneh
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present molecular dynamics simulations of pseudo hard sphere fluid (generalized WCA potential with exponents (50, 49) proposed by Jover et al. J. Chem. Phys 137, (2012)) using GROMACS package. The equation of state and radial distribution functions at contact are obtained from simulations and compared to the available theory of true hard spheres (HS) and available data on pseudo hard spheres. The comparison shows agreements with data by Jover et al. and the Carnahan-Starling equation of HS. The shear viscosity is obtained from the simulations and compared to the Enskog expression and previous HS simulations. It is demonstrated that the PHS potential reproduces the HS shear viscosity accurately.



قيم البحث

اقرأ أيضاً

Considering a granular fluid of inelastic smooth hard spheres we discuss the conditions delineating the rheological regimes comprising Newtonian, Bagnoldian, shear thinning, and shear thickening behavior. Developing a kinetic theory, valid at finite shear rates and densities around the glass transition density, we predict the viscosity and Bagnold coefficient at practically relevant values of the control parameters. The determination of full flow curves relating the shear stress $sigma$ to the shear rate $dotgamma$, and predictions of the yield stress complete our discussion of granular rheology derived from first principles.
Transport properties of dense fluids are fundamentally challenging, because the powerful approaches of equilibrium statistical physics cannot be applied. Polar fluids compound this problem, because the long-range interactions preclude the use of a si mple effect-diameter approach based solely on hard spheres. Here, we develop a kinetic theory for dipolar hard-sphere fluids that is valid up to high density. We derive a mathematical approximation for the radial distribution function at contact directly from the equation of state, and use it to obtain the shear viscosity. We also perform molecular-dynamics simulations of this system and extract the shear viscosity numerically. The theoretical results compare favorably to the simulations.
The transient response of model hard sphere glasses is examined during the application of steady rate start-up shear using Brownian Dynamics (BD) simulations, experimental rheology and confocal microscopy. With increasing strain the glass initially e xhibits an almost linear elastic stress increase, a stress peak at the yield point and then reaches a constant steady state. The stress overshoot has a non-monotonic dependence with Peclet number, Pe, and volume fraction, {phi}, determined by the available free volume and a competition between structural relaxation and shear advection. Examination of the structural properties under shear revealed an increasing anisotropic radial distribution function, g(r), mostly in the velocity - gradient (xy) plane, which decreases after the stress peak with considerable anisotropy remaining in the steady-state. Low rates minimally distort the structure, while high rates show distortion with signatures of transient elongation. As a mechanism of storing energy, particles are trapped within a cage distorted more than Brownian relaxation allows, while at larger strains, stresses are relaxed as particles are forced out of the cage due to advection. Even in the steady state, intermediate super diffusion is observed at high rates and is a signature of the continuous breaking and reformation of cages under shear.
We find in complementary experiments and event driven simulations of sheared inelastic hard spheres that the velocity autocorrelation function $psi(t)$ decays much faster than $t^{-3/2}$ obtained for a fluid of elastic spheres at equilibrium. Particl e displacements are measured in experiments inside a gravity driven flow sheared by a rough wall. The average packing fraction obtained in the experiments is 0.59, and the packing fraction in the simulations is varied between 0.5 and 0.59. The motion is observed to be diffusive over long times except in experiments where there is layering of particles parallel to boundaries, and diffusion is inhibited between layers. Regardless, a rapid decay of $psi(t)$ is observed, indicating that this is a feature of the sheared dissipative fluid, and is independent of the details of the relative particle arrangements. An important implication of our study is that the non-analytic contribution to the shear stress may not be present in a sheared inelastic fluid, leading to a wider range of applicability of kinetic theory approaches to dense granular matter.
153 - Ophir Flomenbom 2010
Normal dynamics in a quasi-one-dimensional channel of length L (toinfty) of N hard spheres are analyzed. The spheres are heterogeneous: each has a diffusion coefficient D that is drawn from a probability density function (PDF), W D^(-{gamma}), for sm all D, where 0leq{gamma}<1. The initial spheres density {rho} is non-uniform and scales with the distance (from the origin) l as, {rho} l^(-a), 0leqaleq1. An approximation for the N-particle PDF for this problem is derived. From this solution, scaling law analysis and numerical simulations, we show here that the mean square displacement for a particle in such a system obeys, <r^2>~t^(1-{gamma})/(2c-{gamma}), where c=1/(1+a). The PDF of the tagged particle is Gaussian in position. Generalizations of these results are considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا