ترغب بنشر مسار تعليمي؟ اضغط هنا

Second harmonic microscopy of poled x-cut thin film lithium niobate: Understanding the contrast mechanism

94   0   0.0 ( 0 )
 نشر من قبل Michael Ruesing
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thin film lithium niobate is of great recent interest and an understanding of periodically poled thin-films is crucial for both fundamental physics and device developments. Second-harmonic (SH) microscopy allows for the non-invasive visualization and analysis of ferroelectric domain structures and walls. While the technique is well understood in bulk lithium niobate, SH microscopy in thin films is largely influenced by interfacial reflections and resonant enhancements, which depend on film thicknesses and the substrate materials. We present a comprehensive analysis of SH microscopy in x-cut lithium niobate thin films, based on a full three dimensional focus calculations, and accounting for interface reflections. We show that the dominant signal in back-reflection originates from a co-propagating phase-matched process observed through reflections, rather than direct detection of the counter-propagating signal as in bulk samples. We can explain the observation of domain structures in the thin film geometry, and in particular, we show that the SH signal from thin poled films allows to unambiguously distinguish areas, which are completely or only partly inverted in depth.

قيم البحث

اقرأ أيضاً

Lithium niobate (LN), dubbed by many as the silicon of photonics, has recently risen to the forefront of chip-scale nonlinear optics research since its demonstration as an ultralow-loss integrated photonics platform. Due to its significant quadratic nonlinearity ($chi^{(2)}$), LN inspires many important applications such as second-harmonic generation (SHG), spontaneous parametric down-conversion, and optical parametric oscillation. Here, we demonstrate high-efficiency SHG in dual-resonant, periodically poled z-cut LN microrings, where quasi-phase matching is realized by field-assisted domain engineering. Meanwhile, dual-band operation is accessed by optimizing the coupling conditions in fundamental and second-harmonic bands via a single pulley waveguide. As a result, when pumping a periodically poled LN microring in the low power regime at around 1617nm, an on-chip SHG efficiency of 250,000%/W is achieved, a state-of-the-art value reported among current integrated photonics platforms. An absolute conversion efficiency of 15% is recorded with a low pump power of 115$mu$W in the waveguide. Such periodically poled LN microrings also present a versatile platform for other cavity-enhanced quasi-phase matched $chi^{(2)}$ nonlinear optical processes.
Prospective integrated quantum optical technologies will combine nonlinear optics and components requiring cryogenic operating temperatures. Despite the prevalence of integrated platforms exploiting $chi^{(2)}$-nonlinearities for quantum optics, for example used for quantum state generation and frequency conversion, their material properties at low temperatures are largely unstudied. Here, we demonstrate the first second harmonic generation in a fiber-coupled lithium niobate waveguide at temperatures down to 4.4K. We observe a reproducible shift in the phase-matched pump wavelength within the telecom band, in addition to transient discontinuities while temperature cycling. Our results establish lithium niobate as a versatile nonlinear photonic integration platform compatible with cryogenic quantum technologies.
We demonstrate second harmonic generation of blue light on an integrated thin-film lithium niobate waveguide and observe a conversion efficiency of $eta_0= 33000%/text{W-cm}^2$, significantly exceeding previous demonstrations.
Bound states in the continuum (BICs), a concept from quantum mechanics, are ubiquitous physical phenomena where waves will be completely locked inside physical systems without energy leaky. Such a physical phenomenon in optics will provide a platform for optical mode confinement to strengthen local field enhancement in nonlinear optics. Here we utilize an optical system consisting of asymmetric nanogratings and waveguide of thin film lithium niobate (LiNbO3) material to enhance second harmonic response near BICs. By breaking the symmetry of grating periodicity, we realize strong local field confined inside waveguide up to 25 times normalized to incident field (with dissymmetric factor of 0.2), allowing strong light-matter interaction in nonlinear material. From the numerical simulation, we theoretically demonstrate that such an optical system can greatly enhance second harmonic intensity enhancement of about 104 compared with undersigned LiNbO3 film and conversion efficiency reaching 1.53e-5 for dissymmetric factor=0.2 under illumination of 1.33 GW/(suqare cm). Surprisingly, we can predict that a giant enhancement of second harmonic conversion efficiency will exceed 8.13e-5 for dissymmetric factor=0.1 when the optical system is extremely close to BICs. We believe that such an optical system to trap local field inside is also accessible to promote the application of thin film lithium niobate in the field of integrated nonlinear optics.
Thin-film lithium niobate (TFLN) in the form of x- or z-cut lithium-niobate-on-insulator (LNOI) has recently popped up as a very promising and novel platform for developing integrated optoelectronic (nano)devices and exploring fundamental research. H ere, we investigate the coherent interaction length $l_{c}$ of optical second-harmonic (SH) microscopy in such samples, that are purposely prepared into a wedge shape, in order to elegantly tune the geometrical confinement from bulk thicknesses down to $approx$ 50 nm. SH microscopy is a very powerful and non-invasive tool for the investigation of structural properties in the biological and solid-state sciences, especially also for visualizing and analyzing ferroelectric domains and domain walls. However, unlike bulk LN, SH microscopy in TFLN is largely affected by interfacial reflections and resonant enhancement that both rely on film thickness and substrate material. In this paper we show that the dominant SHG contribution measured in back-reflection, is the co-propagating phase-matched SH signal and textit{not} the counter-propagating SH portion as is the case for bulk LN samples. Moreover, $l_{c}$ dramatically depends also on the incident pump laser wavelength (sample dispersion) but even more on the numerical aperture of the focussing objective in use. These experimental findings on x- and z-cut TFLN are excellently backed up by our advanced numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا