ترغب بنشر مسار تعليمي؟ اضغط هنا

The First Candidate Colliding-Wind Binary in M33

107   0   0.0 ( 0 )
 نشر من قبل Kristen Garofali
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the detection of the first candidate colliding-wind binary (CWB) in M33, located in the giant H II region NGC 604. The source was first identified in archival {it Chandra} imaging as a relatively soft X-ray point source, with the likely primary star determined from precise astrometric alignment between archival {it Hubble Space Telescope} and {it Chandra} imaging. The candidate primary star in the CWB is classified for the first time in this work as a carbon-rich Wolf-Rayet star with a likely O star companion based on spectroscopy obtained from Gemini-North. We model the X-ray spectrum using {it Chandra} and {it XMM-Newton} observations, and find the CWB is well-fit as a $sim$ 1 keV thermal plasma with a median unabsorbed luminosity in the 0.5--2.0 keV band of $L_{rm X}$ $sim$ 3 $times$ 10$^{35}$ erg s$^{-1}$, making this source among the brightest of CWBs observed to date. We present a long term light curve for the candidate CWB from archival {it Chandra} and {it XMM-Newton} observations, and discuss the constraints placed on the binary by this light curve, as well as the X-ray luminosity at maximum. Finally, we compare this candidate CWB in M33 to other well-studied, bright CWBs in the Galaxy and Magellanic Clouds, such as $eta$ Car.

قيم البحث

اقرأ أيضاً

Wolf-Rayet stars represent one of the final stages of massive stellar evolution. Relatively little is known about this short-lived phase and we currently lack reliable mass, distance, and binarity determinations for a representative sample. Here we r eport the first visual orbit for WR 140(=HD193793), a WC7+O5 binary system known for its periodic dust production episodes triggered by intense colliding winds near periastron passage. The IOTA and CHARA interferometers resolved the pair of stars in each year from 2003--2009, covering most of the highly-eccentric, 7.9 year orbit. Combining our results with the recent improved double-line spectroscopic orbit of Fahed et al. (2011), we find the WR 140 system is located at a distance of 1.67 +/- 0.03 kpc, composed of a WR star with M_WR = 14.9 +/- 0.5 Msun and an O star with M_O = 35.9 +/- 1.3 Msun. Our precision orbit yields key parameters with uncertainties times 6 smaller than previous work and paves the way for detailed modeling of the system. Our newly measured flux ratios at the near-infrared H and Ks bands allow an SED decomposition and analysis of the component evolutionary states.
We present a model for the creation of non-thermal particles via diffusive shock acceleration in a colliding-wind binary. Our model accounts for the oblique nature of the global shocks bounding the wind-wind collision region and the finite velocity o f the scattering centres to the gas. It also includes magnetic field amplification by the cosmic ray induced streaming instability and the dynamical back reaction of the amplified field. We assume that the injection of the ions and electrons is independent of the shock obliquity and that the scattering centres move relative to the fluid at the Alfv{e}n velocity (resulting in steeper non-thermal particle distributions). We find that the Mach number, Alfv{e}nic Mach number, and transverse field strength vary strongly along and between the shocks, resulting in significant and non-linear variations in the particle acceleration efficiency and shock nature (turbulent vs. non-turbulent). We find much reduced compression ratios at the oblique shocks in most of our models compared to our earlier work, though total gas compression ratios that exceed 20 can still be obtained in certain situations. We also investigate the dependence of the non-thermal emission on the stellar separation and determine when emission from secondary electrons becomes important. We finish by applying our model to WR 146, one of the brightest colliding wind binaries in the radio band. We are able to match the observed radio emission and find that roughly 30 per cent of the wind power at the shocks is channelled into non-thermal particles.
We present a model for the non-thermal emission from a colliding-wind binary. Relativistic protons and electrons are assumed to be accelerated through diffusive shock acceleration (DSA) at the global shocks bounding the wind-wind collision region. Th e non-linear effects of the back-reaction due to the cosmic ray pressure on the particle acceleration process and the cooling of the non-thermal particles as they flow downstream from the shocks are included. We explore how the non-thermal particle distribution and the keV-GeV emission changes with the stellar separation and the viewing angle of the system, and with the momentum ratio of the winds. We confirm earlier findings that DSA is very efficient when magnetic field amplification is not included, leading to significantly modified shocks. We also find that the non-thermal flux scales with the binary separation in a complicated way and that the anisotropic inverse Compton emission shows only a moderate variation with viewing angle due to the spatial extent of the wind-wind collision.
Cosmic-ray acceleration has been a long-standing mystery and despite more than a century of study, we still do not have a complete census of acceleration mechanisms. The collision of strong stellar winds in massive binary systems creates powerful sho cks, which have been expected to produce high-energy cosmic-rays through Fermi acceleration at the shock interface. The accelerated particles should collide with stellar photons or ambient material, producing non-thermal emission observable in X-rays and gamma-rays. The supermassive binary star eta Carinae drives the strongest colliding wind shock in the solar neighborhood. Observations with non-focusing high-energy observatories indicate a high energy source near eta Carinae, but have been unable to conclusively identify eta Carinae as the source because of their relatively poor angular resolution. Here we present the first direct focussing observations of the non-thermal source in the extremely hard X-ray band, which is found to be spatially coincident with the star within several arc-seconds. These observations show that the source of non-thermal X-rays varies with the orbital phase of the binary, and that the photon index of the emission is similar to that derived through analysis of the gamma-ray spectrum. This is conclusive evidence that the high-energy emission indeed originates from non-thermal particles accelerated at colliding wind shocks.
WR 125 is considered as a Colliding Wind Wolf-rayet Binary (CWWB), from which the most recent infrared flux increase was reported between 1990 and 1993. We observed the object four times from November 2016 to May 2017 with Swift and XMM-Newton, and c arried out a precise X-ray spectral study for the first time. There were hardly any changes of the fluxes and spectral shapes for half a year, and the absorption-corrected luminosity was 3.0e+33 erg/s in the 0.5 - 10.0 keV range at a distance of 4.1 kpc. The hydrogen column density was higher than that expected from the interstellar absorption, thus the X-ray spectra were probably absorbed by the WR wind. The energy spectrum was successfully modeled by a collisional equilibrium plasma emission, where both the plasma and the absorbing wind have unusual elemental abundances particular to the WR stars. In 1981, the Einstein satellite clearly detected X-rays from WR 125, whereas the ROSAT satellite hardly detected X-rays in 1991, when the binary was probably around the periastron passage. We discuss possible causes for the unexpectedly low soft X-ray flux near the periastron.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا