ﻻ يوجد ملخص باللغة العربية
Recent studies illustrate how machine learning (ML) can be used to bypass a core challenge of molecular modeling: the tradeoff between accuracy and computational cost. Here, we assess multiple ML approaches for predicting the atomization energy of organic molecules. Our resulting models learn the difference between low-fidelity, B3LYP, and high-accuracy, G4MP2, atomization energies, and predict the G4MP2 atomization energy to 0.005 eV (mean absolute error) for molecules with less than 9 heavy atoms and 0.012 eV for a small set of molecules with between 10 and 14 heavy atoms. Our two best models, which have different accuracy/speed tradeoffs, enable the efficient prediction of G4MP2-level energies for large molecules and are available through a simple web interface.
Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry, and materials science, but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning
Machine learning of atomic-scale properties is revolutionizing molecular modelling, making it possible to evaluate inter-atomic potentials with first-principles accuracy, at a fraction of the costs. The accuracy, speed and reliability of machine-lear
In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mos importance as a struc
Based on the first-principles calculations, we perform an initiatory statistical assessment on the reliability level of theoretical positron lifetime of bulk material. We found the original generalized gradient approximation (GGA) form of the enhance
A top-level designed forecasting system for predicting computational times of density-functional theory (DFT)/time-dependent density-functional theory (TDDFT) calculations is presented. The computational time is assumed as the intrinsic property for