ترغب بنشر مسار تعليمي؟ اضغط هنا

An adaptive scheduling tool to optimize measurements to reach a scientific objective: methodology and application to the measurements of stellar orbits in the Galactic Center

58   0   0.0 ( 0 )
 نشر من قبل Aur\\'elien Hees
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In various fields of physics and astronomy, access to experimental facilities or to telescopes is becoming more and more competitive and limited. It becomes therefore important to optimize the type of measurements and their scheduling to reach a given scientific objective and to increase the chances of success of a scientific project. In this communication, extending the work of Ford (2008) and of Loredo et al. (2012), we present an efficient adaptive scheduling tool aimed at prioritzing measurements in order to reach a scientific goal. The algorithm, based on the Fisher matrix, can be applied to a wide class of measurements. We present this algorithm in detail and discuss some practicalities such as systematic errors or measurements losses due to contigencies (such as weather, experimental failure, ...). As an illustration, we consider measurements of the short-period star S0-2 in our Galactic Center. We show that the radial velocity measurements at the two turning points of the radial velocity curve are more powerful for detecting the gravitational redshift than measurements at the maximal relativistic signal. We also explicitly present the methodology that was used to plan measurements in order to detect the relativistic redshift considering systematics and possible measurements losses. For the future, we identify the astrometric turning points to be highly sensitive to the relativistic advance of the periastron. Finally, we also identify measurements particularly sensitive to the distance to our Galactic Center: the radial velocities around periastron and the astrometric measurements just before closest approach and at the maximal right ascension astrometric turning point.

قيم البحث

اقرأ أيضاً

The identification of individual stars in crowded environments using photometric information alone is confounded by source confusion. However, with the addition of spectroscopic information it is possible to distinguish between blends and areas where the light is dominated by a single star using the widths of absorption features. We describe a procedure for identifying locations in kinematically hot environments where the light is dominated by a single star, and apply this method to spectra with 0.1 arcsec angular resolution covering the 2.1 - 2.3 micron interval in the central regions of M32. Targets for detailed investigation are selected as areas of localized brightness enhancement. Three locations where at least 60% of the K-band light comes from a single bright star, and another with light that is dominated by two stars with very different velocities, are identified. The dominant stars are evolving near the tip of the asymptotic giant branch (AGB), and have M5 III spectral type. The lack of a dispersion in spectral-type suggests that the upper AGB within the central arcsec of M32 has a dispersion in J-K of only a few hundreths of a magnitude, in agreement with what is seen at larger radii. One star has weaker atomic absorption lines than the others, such that [M/H] is 0.2 dex lower. Such a difference in metallicity is consistent with the metallicity dispersion inferred from the width of the AGB in M32. The use of line width to distinguish between blends involving many relatively faint stars, none of which dominate the light output, and areas that are dominated by a single intrinsically bright star could be extended to crowded environments in other nearby galaxies.
Using 25 years of data from uninterrupted monitoring of stellar orbits in the Galactic Center, we present an update of the main results from this unique data set: A measurement of mass of and distance to SgrA*. Our progress is not only due to the eig ht year increase in time base, but also due to the improved definition of the coordinate system. The star S2 continues to yield the best constraints on the mass of and distance to SgrA*; the statistical errors of 0.13 x 10^6 M_sun and 0.12 kpc have halved compared to the previous study. The S2 orbit fit is robust and does not need any prior information. Using coordinate system priors, also the star S1 yields tight constraints on mass and distance. For a combined orbit fit, we use 17 stars, which yields our current best estimates for mass and distance: M = 4.28 +/- 0.10|stat. +/. 0.21|sys. x 10^6 M_sun and R_0 = 8.32 +/- 0.07|stat. +/- 0.14|sys. kpc. These numbers are in agreement with the recent determination of R_0 from the statistical cluster parallax. The positions of the mass, of the near-infrared flares from SgrA* and of the radio source SgrA* agree to within 1mas. In total, we have determined orbits for 40 stars so far, a sample which consists of 32 stars with randomly oriented orbits and a thermal eccentricity distribution, plus eight stars for which we can explicitly show that they are members of the clockwise disk of young stars, and which have lower eccentricity orbits.
We present an analysis of the effects of beam deconvolution on noise properties in CMB measurements. The analysis is built around the artDeco beam deconvolver code. We derive a low-resolution noise covariance matrix that describes the residual noise in deconvolution products, both in harmonic and pixel space. The matrix models the residual correlated noise that remains in time-ordered data after destriping, and the effect of deconvolution on it. To validate the results, we generate noise simulations that mimic the data from the Planck LFI instrument. A $chi^2$ test for the full 70 GHz covariance in multipole range $ell=0-50$ yields a mean reduced $chi^2$ of 1.0037. We compare two destriping options, full and independent destriping, when deconvolving subsets of available data. Full destriping leaves substantially less residual noise, but leaves data sets intercorrelated. We derive also a white noise covariance matrix that provides an approximation of the full noise at high multipoles, and study the properties on high-resolution noise in pixel space through simulations.
Angular power spectra computed from Planck HFI 353 GHz intensity and polarization maps produce a TB correlation that can be approximated by a power law. Whether the observed TB correlation is an induced systematic feature or a physical property of Ga lactic dust emission is of interest both for cosmological and Galactic studies. We investigate the large angular scale E- and B-mode morphology of microwave polarized thermal dust emission, and relate it to physical quantities of polarization angle and polarization fraction. We use empirical models of polarized dust to show that dust polarization angle is a key factor in producing the TB correlation. A small sample of both simulated and observed polarization angle maps are combined with 353 GHz intensity and dust polarization fraction to produce a suite of maps from which we compute TB and EB. Model realizations that produce a positive TB correlation are common and can result from large-scale (>5 degree) structure in the polarization angle. The TB correlation appears robust to introduction of individual intensity, polarization angle and polarization fraction model components that are independent of the 353 GHz observations. We conclude that the observed TB correlation is likely the result of large-scale Galactic dust polarization properties.
A key objective of the ESA Gaia satellite is the realization of a quasi-inertial reference frame at visual wavelengths by means of global astrometric techniques. This requires an accurate mathematical and numerical modeling of relativistic light prop agation, as well as double-blind-like procedures for the internal validation of the results, before they are released to the scientific community at large. Aim of this work is to specialize the Time Transfer Functions (TTF) formalism to the case of the Gaia observer and prove its applicability to the task of Global Sphere Reconstruction (GSR), in anticipation of its inclusion in the GSR system, already featuring the suite of RAMOD models, as an additional semi-external validation of the forthcoming Gaia baseline astrometric solutions. We extend the current GSR framework and software infrastructure (GSR2) to include TTF relativistic observation equations compatible with Gaias operations. We use simulated data generated by the Gaia Data Reduction and Analysis Consortium (DPAC) to obtain different least-squares estimations of the full stellar spheres and gauge results. These are compared to analogous solutions obtained with the current RAMOD model in GSR2 and to the catalog generated with GREM, the model baselined for Gaia and used to generate the DPAC synthetic data. Linearized least-squares TTF solutions are based on spheres of about 132,000 primary stars uniformly distributed on the sky and simulated observations spanning the entire 5-yr range of Gaias nominal operational lifetime. The statistical properties of the results compare well with those of GREM. Finally, comparisons to RAMOD@GSR2 solutions confirmed the known lower accuracy of that model and allowed us to establish firm limits on the quality of the linearization point outside of which an iteration for non-linearity is required for its proper convergence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا