ﻻ يوجد ملخص باللغة العربية
It was recently discovered that molecular ionization at high x-ray intensity is enhanced, in comparison with that of isolated atoms, through a phenomenon called CREXIM (charge-rearrangement-enhanced x-ray ionization of molecules). X-ray absorption selectively ionizes heavy atoms within molecules, triggering electron transfer from neighboring atoms to the heavy atom sites and enabling further ionization there. The present theoretical study demonstrates that the CREXIM effect increases with the size of the molecule, as a consequence of increased intramolecular electron transfer from the larger molecular constituents attached to the heavy atoms. We compare x-ray multiphoton ionization dynamics of xenon, iodomethane, and iodobenzene after interacting with an intense x-ray pulse. Although their photoionization cross sections are similar, iodomethane and iodobenzene molecules are more ionized than xenon atoms. Moreover, we predict that the average total charge of iodobenzene is much larger than that of iodomethane, because of the large number of electrons in the benzene ring. The positive charges transferred from the iodine site to the benzene ring are redistributed such that the higher carbon charges are formed at the far end from the iodine site. Our first-principles calculations provide fundamental insights into the interaction of molecules with x-ray free-electron laser (XFEL) pulses. These insights need to be taken into account for interpreting and designing future XFEL experiments.
We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented
We present semiempirical tight binding calculations on thienylenevinylene oligomers up to the hexadecamer stage (n=16) and ab initio calculations based on the local density approximation up to n=8. The results correctly describe the experimental vari
Designing an appropriate set of collective variables is crucial to the success of several enhanced sampling methods. Here we focus on how to obtain such variables from information limited to the metastable states. We characterize these states by a la
The dynamics of a molecule in a magnetic field is significantly different form its zero-field counterpart. One important difference in the presence of a field is the Lorentz force acting on the nuclei, which can be decomposed as the sum of the bare n
The increased energy and power density required in modern electronics poses a challenge for designing new dielectric polymer materials with high energy density while maintaining low loss at high applied electric fields. Recently, an advanced computat