ﻻ يوجد ملخص باللغة العربية
The chiral anomaly is the predicted break down of chiral symmetry in a Weyl semimetal with monopoles of opposite chirality when an electric field parallel to a magnetic field is applied. It occurs because of charge pumping from a positive chirality to a negative chirality monopole. Experimental observation of this fundamental effect has been plagued by concerns about the pathways of the current. Here, we unambiguously demonstrate the thermal analog of the chiral anomaly in topological insulator bismuth-antimony alloys driven into an ideal Weyl semimetal state by a Zeeman field, with the chemical potential pinned at the Weyl points, and in which the Fermi surface has no trivial pockets. The experimental signature is a large enhancement of the thermal conductivity in an applied magnetic field parallel to the thermal gradient that follows the Wiedemann-Franz law above 60 K. Absence of current flow avoids extrinsic effects that plague electrical measurements.
The discovery of Weyl semimetals (WSMs) has fueled tremendous interest in condensed matter physics. WSMs require breaking of either inversion symmetry (IS) or time-reversal symmetry (TRS); they can be categorized into type-I and type-II WSMs, charact
The electron-phonon interaction (EPI) is instrumental in a wide variety of phenomena in solid-state physics, such as electrical resistivity in metals, carrier mobility, optical transition and polaron effects in semiconductors, lifetime of hot carrier
The Seebeck coefficients, electrical resistivities, total thermal conductivities, and magnetization are reported for temperatures between 5 and 350 K for n-type Bi0.88Sb0.12 nano-composite alloys made by Ho-doping at the 0, 1 and 3% atomic levels. Th
After the classification of topological states of matter has been clarified for non-interacting electron systems, the theoretical connection between gapless boundary modes and nontrivial bulk topological structures, and their evolutions as a function
Chiral anomaly or Adler-Bell-Jackiw anomaly in Weyl semimetals (WSMs) has a significant impact on the electron transport behaviors, leading to remarkable longitudinal or planar electrical and thermoelectric transport phenomena in the presence of elec