ﻻ يوجد ملخص باللغة العربية
We perform spatially resolved stellar population analysis for a sample of 69 early-type galaxies (ETGs) from the CALIFA integral field spectroscopic survey, including 48 ellipticals and 21 S0s. We generate and quantitatively characterize profiles of light-weighted mean stellar age and metallicity within $lesssim 2R_e$, as a function of radius and stellar-mass surface density $mu_*$. We study in detail the dependence of profiles on galaxies global properties, including velocity dispersion $sigma_e$, stellar mass, morphology. ETGs are universally characterized by strong, negative metallicity gradients ($sim -0.3,text{dex}$ per $R_e$) within $1,R_e$, which flatten out moving towards larger radii. A quasi-universal local $mu_*$-metallicity relation emerges, which displays a residual systematic dependence on $sigma_e$, whereby higher $sigma_e$ implies higher metallicity at fixed $mu_*$. Age profiles are typically U-shaped, with minimum around $0.4,R_e$, asymptotic increase to maximum ages beyond $sim 1.5,R_e$, and an increase towards the centre. The depth of the minimum and the central increase anti-correlate with $sigma_e$. A possible qualitative interpretation of these observations is a two-phase scenario. In the first phase, dissipative collapse occurs in the inner $1,R_e$, establishing a negative metallicity gradient. The competition between the outside-in quenching due to feedback-driven winds and some form of inside-out quenching, possibly caused by central AGN feedback or dynamical heating, determines the U-shaped age profiles. In the second phase, the accretion of ex-situ stars from quenched and low-metallicity satellites shapes the flatter stellar population profiles in the outer regions.
To investigate star formation and assembly processes of massive galaxies, we present here a spatially-resolved stellar populations analysis of a sample of 45 elliptical galaxies (Es) selected from the CALIFA survey. We find rather flat age and [Mg/Fe
The Calar Alto Legacy Integral Field Area (CALIFA) is an ongoing 3D spectroscopic survey of 600 nearby galaxies of all kinds. This pioneer survey is providing valuable clues on how galaxies form and evolve. Processed through spectral synthesis techni
Physical and chemical properties of the interstellar medium (ISM) at sub-galactic ($sim$kpc) scales play an indispensable role in controlling the ability of gas to form stars. As part of the SMAUG (Simulating Multiscale Astrophysics to Understand Gal
The star formation main sequence (SFMS) is a tight relation between the galaxy star formation rate (SFR) and its total stellar mass ($M_star$). Early-type galaxies (ETGs) are often considered as low-SFR outliers of this relation. We study, for the fi
We present radial stellar population parameters for a subsample of 12 galaxies from the 36 isolated early-type galaxies of Reda et al. Using new long-slit spectra, central values and radial gradients for the stellar age, metallicity [Z/H] and alpha-e