ﻻ يوجد ملخص باللغة العربية
The interplay of optics, dynamics and transport is crucial for the design of novel optoelectronic devices, such as photodetectors and solar cells. In this context, transition metal dichalcogenides (TMDs) have received much attention. Here, strongly bound excitons dominate optical excitation, carrier dynamics and diffusion processes. While the first two have been intensively studied, there is a lack of fundamental understanding of non-equilibrium phenomena associated with exciton transport that is of central importance e.g. for high efficiency light harvesting. In this work, we provide microscopic insights into the interplay of exciton propagation and many-particle interactions in TMDs. Based on a fully quantum mechanical approach and in excellent agreement with photoluminescence measurements, we show that Auger recombination and emission of hot phonons act as a heating mechanism giving rise to strong spatial gradients in excitonic temperature. The resulting thermal drift leads to an unconventional exciton diffusion characterized by spatial exciton halos.
Noncentrosymmetric nature of single-layer transition metal dichalcogenides manifest itself in the finite piezoelectricity and valley-Zeeman coupling. We microscopically model nonlinear exciton transport in nano-bubble of single-layers of transition m
Exciton problem is solved in the two-dimensional Dirac model with allowance for strong electron-hole attraction. The exciton binding energy is assumed smaller than but comparable to the band gap. The exciton wavefunction is found in the momentum spac
Spatially resolved EELS has been performed at diffuse interfaces between MoS$_2$ and MoSe$_2$ single layers. With a monochromated electron source (20 meV) we have successfully probed excitons near the interface by obtaining the low loss spectra at th
We study exciton radiative decay in a two-dimensional material, taking into account large thermal population in the non-radiative states, from which excitons are scattered into the radiative states by acoustic phonons. We find an analytical solution
Low-dimensional materials differ from their bulk counterpart in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding ener