ﻻ يوجد ملخص باللغة العربية
There are indications that some theories with spontaneous symmetry breaking also feature a light scalar in their spectrum, with a mass comparable to the one of the Goldstone modes. In this paper, we perform the one-loop renormalization of a theory of Goldstone modes invariant under a chiral $SU(n)times SU(n)$ symmetry group coupled to a generic scalar singlet. We employ the background field method, together with the heat kernel expansion, to get an expression for the effective action at one loop and single out the anomalous dimensions, which can be read off from the second Seeley-DeWitt coefficient. As a relevant application, we use our master formula to renormalize chiral-scale perturbation theory, an alternative to $SU(3)$ chiral perturbation theory where the $f_0(500)$ meson is interpreted as a dilaton. Based on our results, we briefly discuss strategies to test and discern both effective field theories using lattice simulations.
We construct the Lorentz-invariant chiral Lagrangians up to the order $mathcal{O}(p^4)$ by including $Delta(1232)$ as an explicit degree of freedom. A full one-loop investigation on processes involving $Delta(1232)$ can be performed with them. For th
In this paper we present the complete one-loop matching conditions, up to dimension-six operators of the Standard Model effective field theory, resulting by integrating out the two scalar leptoquarks $S_{1}$ and $S_{3}$. This allows a phenomenologica
The divergent part of the generating functional of the Resonance Chiral Theory is evaluated up to one loop when one multiplet of scalar an pseudoscalar resonances are included and interaction terms which couple up to two resonances are considered. He
The appearance of a light composite $0^+$ scalar resonance in nearly conformal gauge-fermion theories motivates further study of the low energy structure of these theories. To this end, we present a nonperturbative lattice calculation of s-wave scatt
We perform a complete study of the low-energy phenomenology of $S_1$ and $S_3$ lepto-quarks, aimed at addressing the observed deviations in $B$-meson decays and the muon magnetic dipole moment. Leptoquark contributions to observables are computed at