ﻻ يوجد ملخص باللغة العربية
As groundwater is an essential nutrition and irrigation resource, its pollution may lead to catastrophic consequences. Therefore, accurate modeling of the pollution of the soil and groundwater aquifer is highly important. As a model, we consider a density-driven groundwater flow problem with uncertain porosity and permeability. This problem may arise in geothermal reservoir simulation, natural saline-disposal basins, modeling of contaminant plumes, and subsurface flow. This strongly nonlinear time-dependent problem describes the convection of the two-phase flow. This liquid streams under the gravity force, building so-called fingers. The accurate numerical solution requires fine spatial resolution with an unstructured mesh and, therefore, high computational resources. Consequently, we run the parallelized simulation toolbox myug with the geometric multigrid solver on Shaheen II supercomputer. The parallelization is done in physical and stochastic spaces. Additionally, we demonstrate how the myug toolbox can be run in a black-box fashion for testing different scenarios in the density-driven flow. As a benchmark, we solve the Elder-like problem in a 3D domain. For approximations in the stochastic space, we use the generalized polynomial chaos expansion. We compute the mean, variance, and exceedance probabilities of the mass fraction. As a reference solution, we use the solution, obtained from the quasi-Monte Carlo method.
Many problems in fluid dynamics are effectively modeled as Stokes flows - slow, viscous flows where the Reynolds number is small. Boundary integral equations are often used to solve these problems, where the fundamental solutions for the fluid veloci
The flow of incompressible fluids through porous media plays a crucial role in many technological applications such as enhanced oil recovery and geological carbon-dioxide sequestration. The flow within numerous natural and synthetic porous materials
The objective of this paper is twofold. First, we propose two composable block solver methodologies to solve the discrete systems that arise from finite element discretizations of the double porosity/permeability (DPP) model. The DPP model, which is
In this work we present an adaptive boundary element method for computing the electromagnetic response of wave interactions in hyperbolic metamaterials. One unique feature of hyperbolic metamaterial is the strongly directional wave in its propagating
In this article we study the numerical solution of the $L^1$-Optimal Transport Problem on 2D surfaces embedded in $R^3$, via the DMK formulation introduced in [FaccaCardinPutti:2018]. We extend from the Euclidean into the Riemannian setting the DMK m