ترغب بنشر مسار تعليمي؟ اضغط هنا

ISPY -- NaCo Imaging Survey for Planets around Young stars. Discovery of an M dwarf in the gap between HD 193571 and its debris ring

138   0   0.0 ( 0 )
 نشر من قبل Arianna Musso Barcucci
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. The interaction between low-mass companions and the debris discs they reside in is still not fully understood. A debris disc can evolve due to self-stirring, a process in which planetesimals can excite their neighbours to the point of destructive collisions. In addition, the presence of a companion could further stir the disc (companion-stirring). Additional information is necessary to understand this fundamental step in the formation and evolution of a planetary system, and at the moment of writing only a handful of systems are known where a companion and a debris disc have both been detected and studied at the same time. Aims. Our primary goal is to augment the sample of these systems and to understand the relative importance between self-stirring and companion-stirring. Methods. In the course of the VLT/NaCo Imaging Survey for Planets around Young stars (ISPY), we observed HD 193571, an A0 debris disc hosting star at a distance of 68 pc with an age between 60 and 170 Myr. We obtained two sets of observations in L band and a third epoch in H band using the GPI instrument at Gemini-South. Results. A companion was detected in all three epochs at a projected separation of 11 au (0.17 arcsec), and co-motion was confirmed through proper motion analysis. Given the inferred disc size of 120 au, the companion appears to reside within the gap between the host star and the disc. Comparison between the L and H band magnitude and evolutionary tracks suggests a mass of 0.31 - 0.39 solar masses . Conclusions. We discovered a previously unknown M-dwarf companion around HD 193571, making it the third low-mass stellar object discovered within a debris disc. A comparison to self- and companion-stirring models suggests that the companion is likely responsible for the stirring of the disc.

قيم البحث

اقرأ أيضاً

The occurrence rate of long-period giant planets around young stars is highly uncertain since it is not only governed by the protoplanetary disc structure and planet formation process, but also reflects dynamical re-structuring processes after planet formation as well as possible capture of planets not formed in-situ. Direct imaging is currently the only feasible method to detect such wide-orbit planets and constrain their occurrence rate. We carry out a large L-band high-contrast direct imaging survey for giant planets around young stars with protoplanetary or debris discs using the NACO instrument at the ESO Very Large Telescope on Cerro Paranal in Chile. We use very deep angular differential imaging observations with typically >60 deg field rotation, and employ a vector vortex coronagraph where feasible to achieve the best possible point source sensitivity down to an inner working angle of about 100mas. This paper introduces our NACO Imaging Survey for Planets around Young stars (NACO-ISPY), its goals and strategy, the target list, and data reduction scheme, and presents preliminary results from the first 2.5 survey years. We achieve a mean 5 sigma L contrast of 6.4mag at 150mas and a background limit of 16.5mag at >1.5. Our detection probability is >50% for companions with 8,M$_{rm Jup}$ at semi-major axes 80-200au. It thus compares well to the detection space of other state-of-the-art high-contrast imaging surveys. We have contributed to the characterisation of two new planets originally discovered by VLT/SPHERE, but we have not yet independently discovered new planets around any of our target stars. We report the discovery of close-in low-mass stellar companions around four young stars and show L-band scattered light images of the discs around eleven stars, six of which have never been imaged at L-band before.
135 - G. Cugno 2019
Within the NaCo-ISPY exoplanet imaging program, we aim at detecting and characterizing the population of low-mass companions at wide separations ($gtrsim$10AU), focusing in particular on young stars either hosting a known protoplanetary disk or a deb ris disk. R CrA is one of the youngest (1-3 Myr) and most promising objects in our sample because of two previous studies that suggested the presence of a close companion. Our aim is to directly image and characterize the companion for the first time. We observed R CrA twice with the NaCo instrument at VLT in the $L$ filter with a one year time baseline in between. The high-contrast imaging data were reduced and analyzed, and in both datasets the companion candidate was detected. The companion is detected at a separation of $196.8pm4.5$/$196.6pm5.9$ mas ($18.7pm1.3$/$18.7pm1.4$ AU) and position angle of $134.7pm0.5^circ/133.7pm0.7^circ$ in the first/second epoch observation. We measure a contrast of $7.29pm0.18$/$6.70pm0.15$ mag with respect to the primary. Stellar proper motion study rejects the hypothesis of the signal being a background object. The companion candidate orbits in the clockwise direction and, if on a face-on circular orbit, its period is $sim43-47$ yr. This value disagrees with the estimated orbital motion and therefore a face-on circular orbit may be excluded. Depending on the assumed age, extinction and brightness of the primary, the stellar companion has a mass between $0.10pm0.02, M_odot$ and $1.03^{+0.20}_{-0.18},M_odot$ range, if no contribution from circumsecondary material is taken into account. The presence of the companion needs to be taken into account when analyzing the complex circumstellar environment of R CrA.
The majority of debris discs discovered so far have only been detected through infrared excess emission above stellar photospheres. While disc properties can be inferred from unresolved photometry alone under various assumptions for the physical prop erties of dust grains, there is a degeneracy between disc radius and dust temperature that depends on the grain size distribution and optical properties. By resolving the disc we can measure the actual location of the dust. The launch of Herschel, with an angular resolution superior to previous far-infrared telescopes, allows us to spatially resolve more discs and locate the dust directly. Here we present the nine resolved discs around A stars between 20 and 40 pc observed by the DEBRIS survey. We use these data to investigate the disc radii by fitting narrow ring models to images at 70, 100 and 160 {mu}m and by fitting blackbodies to full spectral energy distributions. We do this with the aim of finding an improved way of estimating disc radii for unresolved systems. The ratio between the resolved and blackbody radii varies between 1 and 2.5. This ratio is inversely correlated with luminosity and any remaining discrepancies are most likely explained by differences to the minimum size of grain in the size distribution or differences in composition. We find that three of the systems are well fit by a narrow ring, two systems are borderline cases and the other four likely require wider or multiple rings to fully explain the observations, reflecting the diversity of planetary systems.
We report on the first star discovered to host a planet detected by radial velocity (RV) observations obtained within the CARMENES survey for exoplanets around M dwarfs. HD 147379 ($V = 8.9$ mag, $M = 0.58 pm 0.08$ M$_{odot}$), a bright M0.0V star at a distance of 10.7 pc, is found to undergo periodic RV variations with a semi-amplitude of $K = 5.1pm0.4$ m s$^{-1}$ and a period of $P = 86.54pm0.06$ d. The RV signal is found in our CARMENES data, which were taken between 2016 and 2017, and is supported by HIRES/Keck observations that were obtained since 2000. The RV variations are interpreted as resulting from a planet of minimum mass $m_{rm p}sin{i} = 25 pm 2$ M$_{oplus}$, 1.5 times the mass of Neptune, with an orbital semi-major axis $a = 0.32$ au and low eccentricity ($e < 0.13$). HD 147379b is orbiting inside the temperate zone around the star, where water could exist in liquid form. The RV time-series and various spectroscopic indicators show additional hints of variations at an approximate period of 21.1d (and its first harmonic), which we attribute to the rotation period of the star.
Young nearby stars are good candidates in the search for planets with both radial velocity (RV) and direct imaging techniques. This, in turn, allows for the computation of the giant planet occurrence rates at all separations. The RV search around you ng stars is a challenge as they are generally faster rotators than older stars of similar spectral types and they exhibit signatures of magnetic activity (spots) or pulsation in their RV time series. Specific analyses are necessary to characterize, and possibly correct for, this activity. Our aim is to search for planets around young nearby stars and to estimate the giant planet (GP) occurrence rates for periods up to 1000 days. We used the HARPS spectrograph on the 3.6m telescope at La Silla Observatory to observe 89 A-M young (< 600 Myr) stars. We used our SAFIR (Spectroscopic data via Analysis of the Fourier Interspectrum Radial velocities ) software to compute the RV and other spectroscopic observables. Then, we computed the companion occurrence rates on this sample. We confirm the binary nature of HD177171, HD181321 and HD186704. We report the detection of a close low mass stellar companion for HIP36985. No planetary companion was detected. We obtain upper limits on the GP (< 13 MJup) and BD (13-80 MJup) occurrence rates based on 83 young stars for periods less than 1000 days, which are set, 2_-2^+3 % and 1_-1^+3 %.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا