ﻻ يوجد ملخص باللغة العربية
In this paper we consider the pricing of variable annuities (VAs) with guaranteed minimum withdrawal benefits. We consider two pricing approaches, the classical risk-neutral approach and the benchmark approach, and we examine the associated static and optimal behaviors of both the investor and insurer. The first model considered is the so-called minimal market model, where pricing is achieved using the benchmark approach. The benchmark approach was introduced by Platen in 2001 and has received wide acceptance in the finance community. Under this approach, valuing an asset involves determining the minimum-valued replicating portfolio, with reference to the growth optimal portfolio under the real-world probability measure, and it both subsumes classical risk-neutral pricing as a particular case and extends it to situations where risk-neutral pricing is impossible. The second model is the Black-Scholes model for the equity index, where the pricing of contracts is performed within the risk-neutral framework. Crucially, we demonstrate that when the insurer prices and reserves using the Black-Scholes model, while the insured employs a dynamic withdrawal strategy based on the minimal market model, the insurer may be underestimating the value and associated reserves of the contract.
In electricity markets, it is sensible to use a two-factor model with mean reversion for spot prices. One of the factors is an Ornstein-Uhlenbeck (OU) process driven by a Brownian motion and accounts for the small variations. The other factor is an O
This paper focuses on the pricing of continuous geometric Asian options (GAOs) under a multifactor stochastic volatility model. The model considers fast and slow mean reverting factors of volatility, where slow volatility factor is approximated by a
We consider option pricing using a discrete-time Markov switching stochastic volatility with co-jump model, which can model volatility clustering and varying mean-reversion speeds of volatility. For pricing European options, we develop a computationa
The goal of this paper is to investigate the method outlined by one of us (PR) in Cherubini et al. (2009) to compute option prices. We name it the SINC approach. While the COS method by Fang and Osterlee (2009) leverages the Fourier-cosine expansion
In this paper we investigate price and Greeks computation of a Guaranteed Minimum Withdrawal Benefit (GMWB) Variable Annuity (VA) when both stochastic volatility and stochastic interest rate are considered together in the Heston Hull-White model. We