ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of one valence proton on seniority and angular momentum of neutrons in neutron-rich $^{122-131}$Sb$_{51}$ isotopes

96   0   0.0 ( 0 )
 نشر من قبل Antoine Lemasson
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The neutron-rich $^{122-131}$Sb isotopes were produced as fission fragments in the reaction $^{9}$Be($^{238}$U,~f) with 6.2 MeV/u beam energy. An unique setup, consisting of AGATA, VAMOS++ and EXOGAM detectors, was used which enabled the prompt-delayed gamma-ray ($gamma$) spectroscopy of fission fragments in the time range of 100 ns - 200 $mu$s. New isomers, prompt and delayed transitions were established in the even-A $^{122-130}$Sb isotopes. In the odd-A $^{123-131}$Sb isotopes, new prompt and delayed $gamma$-ray transitions were identified, in addition to the confirmation of the previously known isomers. The half-lives of the isomeric states and the $B(E2)$ transition probabilities of the observed transitions depopulating these isomers were extracted. The experimental data was compared with the theoretical results obtained in the framework of Large-Scale Shell-Model (LSSM) calculations in a restricted model space. Modifications of several components of the shell model interaction were introduced to obtain a consistent agreement with the excitation energies and the $B(E2)$ transition probabilities in neutron-rich Sn and Sb isotopes. The isomeric configurations in Sn and Sb were found to be relatively pure. Further, the calculations revealed that the presence of a single valence proton, mainly in the $g_{7/2}$ orbital in Sb isotopes, leads to significant mixing (due to the $ upi$ interaction) of: (i) the neutron seniorities ($upsilon_{ u}$) and (ii) the neutron angular momentum ($I_{ u}$). The above features have a weak impact on the excitation energies, but have an important impact on the $B(E2)$ transition probabilities. In addition, a constancy of the relative excitation energies irrespective of neutron seniority and neutron number in Sn and Sb was observed.



قيم البحث

اقرأ أيضاً

The fusion and transfer induced fission reaction $^{9}$Be($^{238}$U,~f) with 6.2 MeV/u beam energy, using a unique setup consisting of AGATA, VAMOS++ and EXOGAM detectors, was used to populate through the fission process and study the neutron-rich $^ {119,121}$In isotopes. This setup enabled the prompt-delayed $gamma$-ray spectroscopy of isotopes in the time range of $100~rm{ns} - 200~murm{s}$. In the odd-$A$ $^{119,121}$In isotopes, indications of a short half-life $19/2^{-}$ isomeric state, in addition to the previously known $25/2^{+}$ isomeric state, were observed from the present data. Further, new prompt transitions above the $25/2^{+}$ isomer in $^{121}$In were identified along with reevaluation of its half-life. The experimental data were compared with the theoretical results obtained in the framework of large-scale shell-model calculations in a restricted model space. The $langle pi g_{9/2} u h_{11/2};I arrowvert hat{mathcal{H}}arrowvert pi g_{9/2} u h_{11/2};Irangle$ two-body matrix elements of residual interaction were modified to explain the excitation energies and the $B(E2)$ transition probabilities in the neutron-rich In isotopes. The (i) decreasing trend of $E(29/2^{+}) - E(25/2^{+})$ in odd-In (with dominant configuration $pi g_{9/2}^{-1} u h_{11/2}^{-2}$ and maximum aligned spin of $29/2^{+}$) and (ii) increasing trend of $E(27/2^{+}) - E(23/2^{+})$ in odd-Sb (with dominant configuration $pi g_{7/2}^{+1} u h_{11/2}^{-2}$ and maximum aligned spin of $27/2^{+}$) with increasing neutron number could be understood as a consequence of hole-hole and particle-hole interactions, respectively.
The half-lives of isotopes around the $N=82$ shell closure are an important ingredient in astrophysical simulations and strongly influence the magnitude of the second $r$-process abundance peak in the $Asim130$ region. The most neutron-rich $N=82$ nu clei are not accessible to the current generation of radioactive beam facilities and $r$-process simulations must therefore rely on calculations of the half-lives of the isotopes involved. Half-life measurements of the experimentally accessible nuclei in this region are important in order to benchmark these calculations. The half-life of $^{130}$Cd is particularly important as it is used to tune the Gamow-Teller quenching in shell-model calculations for the $beta$ decay of other nuclei in this region. In this work, the GRIFFIN $gamma$-ray spectrometer at the TRIUMF-ISAC facility was used to measure the half-life of $^{130}_{~48}$Cd$_{82}$ to be $T_{1/2}= 126(4)$ ms. In addition, the half-lives of the three $beta$ decaying states of $^{131}_{~49}$In$_{82}$ were measured to be $T_{1/2}(1/2^-)=328(15)$ ms, $T_{1/2}(9/2^+)=265(8)$ ms, and $T_{1/2}(21/2^+)=323(50)$ ms, respectively, providing an important benchmark for half-life calculations in this region.
77 - D.T. Tran , H.J. Ong , G. Hagen 2017
The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerpr int is the existence of the so-called `magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin-orbit (SO) coupling force in 1949 helped explain the nuclear magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number 6 in 13-20C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on 14,15C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon-nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics.
First results are reported on the ground state configurations of the neutron-rich $^{29,30}$Na isotopes, obtained via Coulomb dissociation (CD) measurements as a method of the direct probe. The invariant mass spectra of those nuclei have been obtaine d through measurement of the four-momentum of all decay products after Coulomb excitation on a $^{208}Pb$ target at energies of 400-430 MeV/nucleon using FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated Coulomb-dissociation cross-sections (CD) of 89 $(7)$ mb and 167 $(13)$ mb up to excitation energy of 10 MeV for one neutron removal from $^{29}$Na and $^{30}$Na respectively, have been extracted. The major part of one neutron removal, CD cross-sections of those nuclei populate core, in its ground state. A comparison with the direct breakup model, suggests the predominant occupation of the valence neutron in the ground state of $^{29}$Na${(3/2^+)}$ and $^{30}$Na${(2^+)}$ is the $d$ orbital with small contribution in the $s$-orbital which are coupled with ground state of the core. The ground state configurations of these nuclei are as $^{28}$Na$_{gs (1^+)otimes u_{s,d}$ and $^{29}$Na$_{gs}(3/2^+)otimes u_{ s,d}$, respectively. The ground state spin and parity of these nuclei, obtained from this experiment are in agreement with earlier reported values. The spectroscopic factors for the valence neutron occupying the $s$ and $d$ orbitals for these nuclei in the ground state have been extracted and reported for the first time. A comparison of the experimental findings with the shell model calculation using MCSM suggests a lower limit of around 4.3 MeV of the sd-pf shell gap in $^{30}$Na.
We present our recent study of cross sections and angular distributions of projectile fragments from heavy-ion reactions at beam energy of 15 MeV/nucleon. We studied the production cross sections and the angular distributions of neutron-rich nuclides from collisions of a 86 Kr (15 MeV/nucleon) beam with heavy targets ( 64 Ni, 124 Sn and 238 U). Experimental data from our previous work at Texas A & M were compared with model calculations. Our calculations were based on a two-step approach: the dynamical stage of the collision was described with, first, the phenomenological Deep-Inelastic Transfer model (DIT) and, alternatively, with the microscopic Constrained Molecular Dynamics model (CoMD). The de-excitation of the hot heavy projectile fragments was performed with the Statistical Multifragmentation Model (SMM). An overall good discription of the available data was obtained with the models employed. Furthermore, we performed calculations with a radioactive beam of 92 Kr (15 MeV/nucleon) interacting with a target of 238 U. We observed that the multinucleon transfer mechanism leads to extremely neutron-rich nuclides toward and beyond the astrophysical r-process path.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا