ﻻ يوجد ملخص باللغة العربية
Second only to initial mass, the rate of wind-driven mass loss determines the final mass of a massive star and the nature of its remnant. Motivated by the need to reconcile observational values and theory, we use a recently vetted technique to analyze the mass-loss rates in a sample of OB stars that generate bowshock nebulae. We measure peculiar velocities from new Gaia parallax and proper motion data and their spectral types from new optical and infrared spectroscopy. For our sample of 67 central stars in morphologically selected bowshocks nebulae, 67 are OB stars. The median peculiar velocity is 11 km/s, significantly smaller than classical `runaway star velocities. Mass-loss rates for these O and early B stars agree with recently lowered theoretical predictions, ranging from ~10^-7 Msun/yr for mid-O dwarfs to 10^-9 Msun/yr for late-O dwarfs---a factor of about 2.7 lower than the often-used Vink et al. (2001) formulation. Our results provide the first observational mass-loss rates for B0--B3 dwarfs and giants---10^-9 to 10^-8 Msun/yr. We find evidence for an increase in the mass-loss rates below a critical effective temperature, consistent with predictions of the bi-stability phenomenon in the range Teff=19,000--27,000 K. The sample exhibits a correlation between modified wind momentum and luminosity, consistent in slope but lower by 0.43 dex in magnitude compared to canonical wind-luminosity relations. We identify a small subset of objects deviating most significantly from theoretical expectations as probable radiation-driven bow wave nebulae by virtue of their low stellar-to-nebular luminosity ratios. For these, the inferred mass-loss rates must be regarded as upper limits.
We investigate the impact of optically thick clumping on stellar wind diagnostics in O supergiants and constrain wind parameters associated with porosity in velocity space. This is the first time the effects of optically thick clumping have been inve
We use a combination of VJHK and Spitzer} [3.6], [5.8] and [8.0] photometry, to determine IR excesses in a sample of LMC and SMC O stars. This sample is ideal for determining excesses because: 1) the distances to the stars, and hence their luminositi
We have calculated mass-loss rates for a grid of wind models covering a wide range of stellar parameters and have derived a mass-loss recipe for two ranges of effective temperature at either side of the bi-stability jump around spectral type B1. Fo
We aim to investigate mass loss and luminosity in a large sample of evolved stars in several Local Group galaxies with a variety of metalliticies and star-formation histories: the Small and Large Magellanic Cloud, and the Fornax, Carina, and Sculptor
We discuss the basic physics of hot-star winds and we provide mass-loss rates for (very) massive stars. Whilst the emphasis is on theoretical concepts and line-force modelling, we also discuss the current state of observations and empirical modelling, and address the issue of wind clumping.