ﻻ يوجد ملخص باللغة العربية
The correspondence principle in physics between quantum mechanics and classical mechanics suggests deep relations between spectral and geometric entities of Riemannian manifolds. We survey---in a way intended to be accessible to a wide audience of mathematicians---a mathematically rigorous instance of such a relation that emerged in recent years, showing a dynamical interpretation of certain Laplace eigenfunctions of hyperbolic surfaces.
We prove the Ramanujan-Petersson conjecture for Maass forms of the group $SL(2,Z)$, with the help of automorphic distribution theory: this is an alternative to classical automorphic function theory, in which the plane takes the place usually ascribed to the hyperbolic half-plane.
We continue the analysis of modular invariant functions, subject to inhomogeneous Laplace eigenvalue equations, that were determined in terms of Poincare series in a companion paper. The source term of the Laplace equation is a product of (derivative
We continue the study in [21] of the linearizability near an indif- ferent fixed point of a power series f, defined over a field of prime characteristic p. It is known since the work of Herman and Yoccoz [13] in 1981 that Siegels linearization theore
Inspired by the work of Zagier, we study geometrically the probability measures $m_y$ with support on the closed horocycles of the unit tangent bundle $M=text{PSL}(2,mathbb{R})/text{PSL}(2,mathbb{Z})$ of the modular orbifold $text{PSL}(2,mathbb Z)$.
We study ultrametric germs in one variable having an irrationally indifferent fixed point at the origin with a prescribed multiplier. We show that for many values of the multiplier, the cycles in the unit disk of the corresponding monic quadratic pol