ترغب بنشر مسار تعليمي؟ اضغط هنا

NICER Discovers Spectral Lines During Photospheric Radius Expansion Bursts from 4U 1820-30: Evidence for Burst-driven Winds

54   0   0.0 ( 0 )
 نشر من قبل Tod E. Strohmayer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery with the Neutron Star Interior Composition Explorer (NICER) of narrow emission and absorption lines during photospheric radius expansion (PRE) X-ray bursts from the ultracompact binary 4U 1820-30. NICER observed the source in 2017 August accumulating about 60 ks of exposure. Five thermonuclear X-ray bursts were detected of which four showed clear signs of PRE. We extracted spectra during the PRE phases and fit each to a model that includes a comptonized component to describe the accretion-driven emission, and a black body for the burst thermal radiation. The temperature and spherical emitting radius of the fitted black body are used to assess the strength of PRE in each burst. The two strongest PRE bursts (burst pair 1) had black body temperatures of approximately 0.6 keV and emitting radii of 100 km (at a distance of 8.4 kpc). The other two bursts (burst pair 2) had higher temperatures (~0.67 keV) and smaller radii (75 km). All of the PRE bursts show evidence of narrow line emission near 1 keV. By co-adding the PRE phase spectra of burst pairs 1 and, separately, 2 we find, in both co-added spectra, significant, narrow, spectral features near 1.0 (emission), 1.7 and 3.0 keV (both in absorption). Remarkably, all the fitted line centroids in the co-added spectrum of burst pair 1 appear systematically blue-shifted by a factor of $1.046 pm 0.006$ compared to the centroids of pair 2, strongly indicative of a gravitational red-shift, a wind-induced blue-shift, or more likely some combination of both effects. The observed shifts are consistent with this scenario in that the stronger PRE bursts in pair 1 reach larger photospheric radii, and thus have weaker gravitational red-shifts, and they generate faster outflows, yielding higher blue-shifts. We discuss possible elemental identifications for the observed features in the context of recent burst-driven wind models.



قيم البحث

اقرأ أيضاً

On August 24th 2008 the new magnetar SGR 0501+4516 (discovered by SWIFT) emitted a bright burst with a pronounced double-peak structure in hard X-rays, reminiscent of the double-peak temporal structure seen in some bright thermonuclear bursts on accr eting neutron stars. In the latter case this is due to Photospheric Radius Expansion (PRE): when the flux reaches the Eddington limit, the photosphere expands and cools so that emission becomes softer and drops temporarily out of the X-ray band, re-appearing as the photosphere settles back down. We consider the factors necessary to generate double-peaked PRE events, and show that such a mechanism could plausibly operate in magnetar bursts, despite the vastly different emission process. Identification of the magnetic Eddington limit in a magnetar would constrain magnetic field and distance and could, in principle, enable a measurement of gravitational redshift. It would also locate the emitting region at the neutron star surface, constraining the burst trigger mechanism. Conclusive confirmation of PRE events will require more detailed radiative models for bursts. However for SGR 0501+4516 the predicted critical flux (using the magnetic field strength inferred from timing and the distance suggested by its probable location in the Perseus arm of our Galaxy) is consistent with that observed in the August 24th burst.
Recent theoretical and observational studies have shown that ashes from thermonuclear burning may be ejected during radius-expansion bursts, giving rise to photoionisation edges in the X-ray spectra. We report a search for such features in Chandra sp ectra observed from the low-mass X-ray binary 4U 1728-34. We analysed the spectra from four radius-expansion bursts detected in 2006 July, and two in 2002 March, but found no evidence for discrete features. We estimate upper limits for the equivalent widths of edges of a few hundred eV, which for the moderate temperatures observed during the bursts, are comparable with the predictions. During the 2006 July observation 4U 1728-34 exhibited weak, unusually frequent bursts (separated by <2 hr in some cases), with profiles and alpha-values characteristic of hydrogen-poor fuel. Recurrence times as short as those measured are insufficient to exhaust the accreted hydrogen at solar composition, suggesting that the source accretes hydrogen deficient fuel, for example from an evolved donor. The detection for the first time of a 10.77 min periodic signal in the persistent intensity, perhaps arising from orbital modulation, supports this explanation, and suggests that this system is an ultracompact binary similar to 4U 1820-30.
We present analysis of two type-I X-ray bursts observed by NuSTAR originating from the very faint transient neutron star low-mass X-ray binary GRS 1741.9-2853 during a period of outburst in May 2020. We show that the persistent emission can be modele d as an absorbed, Comptonized blackbody in addition to Fe K$alpha$ emission which can be attributed to relativistic disk reflection. We measure a persistent bolometric, unabsorbed luminosity of $L_{mathrm{bol}}=7.03^{+0.04}_{-0.05}times10^{36},mathrm{erg,s^{-1}}$, assuming a distance of 7 kpc, corresponding to an Eddington ratio of $4.5%$. This persistent luminosity combined with light curve analysis leads us to infer that the bursts were the result of pure He burning rather than mixed H/He burning. Time-resolved spectroscopy reveals that the bolometric flux of the first burst exhibits a double-peaked structure, placing the source within a small population of accreting neutron stars which exhibit multiple-peaked type-I X-ray bursts. We find that the second, brighter burst shows evidence for photospheric radius expansion (PRE) and that at its peak, this PRE event had an unabsorbed bolometric flux of $F_{mathrm{peak}}=2.94^{+0.28}_{-0.26}times10^{-8},mathrm{erg,cm^{-2},s^{-1}}$. This yields a new distance estimate of $d=9.0pm0.5$ kpc, assuming that this corresponds to the Eddington limit for pure He burning on the surface of a canonical neutron star. Additionally, we performed a detailed timing analysis which failed to find evidence for quasiperiodic oscillations or burst oscillations, and we place an upper limit of $16%$ on the rms variability around 589 Hz, the frequency at which oscillations have previously been reported.
The ultracompact X-ray binary 4U 1820-30 is well known for its ~170-d superorbital modulation in X-ray flux and spectrum, and the exclusiveness of bursting behavior to the low hard island state. In May-June 2009, there was an exceptionally long 51-d low state. This state was well covered by X-ray observations and 12 bursts were detected, 9 with the high-throughput RXTE. We investigate the character of these X-ray bursts and find an interesting change in their photospheric expansion behavior. At the lowest inferred mass accretion rates, this expansion becomes very large in 4 bursts and reaches the so-called superexpansion regime. We speculate that this is due to the geometry of the inner accretion flow being spherical and a decreasing accretion rate: when the flow geometry nearest to the neutron star is spherical and the accretion rate is low, the ram pressure of the accretion disk may become too low to counteract that of the photospheric expansion. In effect, this may provide a novel means to probe the accretion flow. Additionally, we observe a peculiar effect: the well-known cessation of X-ray bursts in the high state is too quick to be consistent with a transition to stable helium burning. We suggest an alternative explanation, that the cessation is due to the introduction of a non-nuclear heat source in the neutron star ocean.
The persistently bright ultra-compact neutron star low-mass X-ray binary 4U 1820$-$30 displays a $sim$170 d accretion cycle, evolving between phases of high and low X-ray modes, where the 3 -- 10 keV X-ray flux changes by a factor of up to $approx 8$ . The source is generally in a soft X-ray spectral state, but may transition to a harder state in the low X-ray mode. Here, we present new and archival radio observations of 4U 1820$-$30 during its high and low X-ray modes. For radio observations taken within a low mode, we observed a flat radio spectrum consistent with 4U 1820$-$30 launching a compact radio jet. However, during the high X-ray modes the compact jet was quenched and the radio spectrum was steep, consistent with optically-thin synchrotron emission. The jet emission appeared to transition at an X-ray luminosity of $L_{rm X (3-10 keV)} sim 3.5 times 10^{37} (D/rm{7.6 kpc})^{2}$ erg s$^{-1}$. We also find that the low-state radio spectrum appeared consistent regardless of X-ray hardness, implying a connection between jet quenching and mass accretion rate in 4U 1820$-$30, possibly related to the properties of the inner accretion disk or boundary layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا