ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong pathwise solution and large deviation principle for the stochastic Boussinesq equations with partial diffusion term

82   0   0.0 ( 0 )
 نشر من قبل Zhaoyang Qiu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish the existence and uniqueness of local strong pathwise solutions to the stochastic Boussinesq equations with partial diffusion term forced by multiplicative noise on the torus in $mathbb{R}^{d},d=2,3$. The solution is strong in both PDE and probabilistic sense.In the two dimensional case, we prove the global existence of strong solutions to the Boussinesq equations forced by additive noise using a suitable stochastic analogue of a logarithmic Gronwalls lemma. After the global existence and uniqueness of strong solutions are established, the large deviation principle (LDP) is proved by the weak convergence method. The weak convergence is shown by a tightness argument in the appropriate functional space.



قيم البحث

اقرأ أيضاً

303 - W.Wang , A.J. Roberts 2009
Averaging is an important method to extract effective macroscopic dynamics from complex systems with slow modes and fast modes. This article derives an averaged equation for a class of stochastic partial differential equations without any Lipschitz a ssumption on the slow modes. The rate of convergence in probability is obtained as a byproduct. Importantly, the deviation between the original equation and the averaged equation is also studied. A martingale approach proves that the deviation is described by a Gaussian process. This gives an approximation to errors of $mathcal{O}(e)$ instead of $mathcal{O}(sqrt{e})$ attained in previous averaging.
76 - Wei Hong , Shihu Li , Wei Liu 2021
This paper is devoted to investigating the Freidlin-Wentzells large deviation principle for a class of McKean-Vlasov quasilinear SPDEs perturbed by small multiplicative noise. We adopt the variational framework and the modified weak convergence crite ria to prove the Laplace principle for McKean-Vlasov type SPDEs, which is equivalent to the large deviation principle. Moreover, we do not assume any compactness condition of embedding in the Gelfand triple to handle both the cases of bounded and unbounded domains in applications. The main results can be applied to various McKean-Vlasov type SPDEs such as distribution dependent stochastic porous media type equations and stochastic p-Laplace type equations.
This paper is devoted to proving the strong averaging principle for slow-fast stochastic partial differential equations with locally monotone coefficients, where the slow component is a stochastic partial differential equations with locally monotone coefficients and the fast component is a stochastic partial differential equations (SPDEs) with strongly monotone coefficients. The result is applicable to a large class of examples, such as the stochastic porous medium equation, the stochastic $p$-Laplace equation, the stochastic Burgers type equation and the stochastic 2D Navier-Stokes equation, which are the nonlinear stochastic partial differential equations. The main techniques are based on time discretization and the variational approach to SPDEs.
In this paper, we investigate the convergence of the global large solution to its associated constant equilibrium state with an explicit decay rate for the compressible Navier-Stokes equations in three-dimensional whole space. Suppose the initial dat a belongs to some negative Sobolev space instead of Lebesgue space, we not only prove the negative Sobolev norms of the solution being preserved along time evolution, but also obtain the convergence of the global large solution to its associated constant equilibrium state with algebra decay rate. Besides, we shall show that the decay rate of the first order spatial derivative of large solution of the full compressible Navier-Stokes equations converging to zero in $L^2-$norm is $(1+t)^{-5/4}$, which coincides with the heat equation. This extends the previous decay rate $(1+t)^{-3/4}$ obtained in cite{he-huang-wang2}.
52 - I. Kurniawan , M.R. James 2004
In this paper we consider an alternative formulation of a class of stochastic wave and master equations with scalar noise that are used in quantum optics for modelling open systems and continuously monitored systems. The reformulation is obtained by applying J.M.C. Clarks pathwise reformulation technique from the theory of classical nonlinear filtering. The pathwi
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا