ﻻ يوجد ملخص باللغة العربية
We present an error analysis and further numerical investigations of the Parameterized-Background Data-Weak (PBDW) formulation to variational Data Assimilation (state estimation), proposed in [Y Maday, AT Patera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933-965]. The PBDW algorithm is a state estimation method involving reduced models. It aims at approximating an unknown function $u^{rm true}$ living in a high-dimensional Hilbert space from $M$ measurement observations given in the form $y_m = ell_m(u^{rm true}),, m=1,dots,M$, where $ell_m$ are linear functionals. The method approximates $u^{rm true}$ with $hat{u} = hat{z} + hat{eta}$. The emph{background} $hat{z}$ belongs to an $N$-dimensional linear space $mathcal{Z}_N$ built from reduced modelling of a parameterized mathematical model, and the emph{update} $hat{eta}$ belongs to the space $mathcal{U}_M$ spanned by the Riesz representers of $(ell_1,dots, ell_M)$. When the measurements are noisy {--- i.e., $y_m = ell_m(u^{rm true})+epsilon_m$ with $epsilon_m$ being a noise term --- } the classical PBDW formulation is not robust in the sense that, if $N$ increases, the reconstruction accuracy degrades. In this paper, we propose to address this issue with an extension of the classical formulation, {which consists in} searching for the background $hat{z}$ either on the whole $mathcal{Z}_N$ in the noise-free case, or on a well-chosen subset $mathcal{K}_N subset mathcal{Z}_N$ in presence of noise. The restriction to $mathcal{K}_N$ makes the reconstruction be nonlinear and is the key to make the algorithm significantly more robust against noise. We {further} present an emph{a priori} error and stability analysis, and we illustrate the efficiency of the approach on several numerical examples.
We provide a number of extensions and further interpretations of the Parameterized-Background Data-Weak (PBDW) formulation, a real-time and in-situ Data Assimilation (DA) framework for physical systems modeled by parametrized Partial Differential Equ
State estimation aims at approximately reconstructing the solution $u$ to a parametrized partial differential equation from $m$ linear measurements, when the parameter vector $y$ is unknown. Fast numerical recovery methods have been proposed based on
The spectral deferred correction method is a variant of the deferred correction method for solving ordinary differential equations. A benefit of this method is that is uses low order schemes iteratively to produce a high order approximation. In this
Stable and accurate modeling of thin shells requires proper enforcement of all types of boundary conditions. Unfortunately, for Kirchhoff-Love shells, strong enforcement of Dirichlet boundary conditions is difficult because both functional and deriva
We consider the numerical analysis of the inchworm Monte Carlo method, which is proposed recently to tackle the numerical sign problem for open quantum systems. We focus on the growth of the numerical error with respect to the simulation time, for wh