ترغب بنشر مسار تعليمي؟ اضغط هنا

Demonstration of the broadband half-wave plate using the nine-layer sapphire for the CMB polarization experiment

591   0   0.0 ( 0 )
 نشر من قبل Kunimoto Komatsu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the development of the achromatic half-wave plate (AHWP) at millimeter wave for cosmic microwave background polarization experiments. We fabricate an AHWP consisting of nine a-cut sapphire plates based on the Pancharatnam recipe to cover a wide frequency range. The modulation efficiency and the phase are measured in a frequency range of 33 to 260 GHz with incident angles up to 10 degrees. We find the measurements at room temperature are in good agreement with the predictions. This is the broadest demonstration of the AHWP at the millimeter wave.

قيم البحث

اقرأ أيضاً

We describe the development of an ambient-temperature continuously-rotating half-wave plate (HWP) for study of the Cosmic Microwave Background (CMB) polarization by the POLARBEAR-2 (PB2) experiment. Rapid polarization modulation suppresses 1/f noise due to unpolarized atmospheric turbulence and improves sensitivity to degree-angular-scale CMB fluctuations where the inflationary gravitational wave signal is thought to exist. A HWP modulator rotates the input polarization signal and therefore allows a single polarimeter to measure both linear polarization states, eliminating systematic errors associated with differencing of orthogonal detectors. PB2 projects a 365-mm-diameter focal plane of 7,588 dichroic, 95/150 GHz transition-edge-sensor bolometers onto a 4-degree field of view that scans the sky at $sim$ 1 degree per second. We find that a 500-mm-diameter ambient-temperature sapphire achromatic HWP rotating at 2 Hz is a suitable polarization modulator for PB2. We present the design considerations for the PB2 HWP, the construction of the HWP optical stack and rotation mechanism, and the performance of the fully-assembled HWP instrument. We conclude with a discussion of HWP polarization modulation for future Simons Array receivers.
We describe the design of a cryogenic rotation stage (CRS) for use with the cryogenic half-wave plate (CHWP) polarization modulator on the POLARBEAR-2b and POLARBEAR-2c (PB2b/c) cosmic microwave background (CMB) experiments, the second and third inst allments of the Simons Array. Rapid modulation of the CMB polarization signal using a CHWP suppresses 1/f contamination due to atmospheric turbulence and allows a single polarimeter to measure both polarization states, mitigating systematic effects that arise when differencing orthogonal detectors. To modulate the full detector array while avoiding excess photon loading due to thermal emission, the CHWP must have a clear-aperture diameter of > 450 mm and be cooled to < 100 K. We have designed a 454-mm-clear-aperture, < 65 K CRS using a superconducting magnetic bearing driven by a synchronous magnetic motor. We present the specifications for the CRS, its interfacing to the PB2b/c receiver cryostat, its performance in a stand-alone test, and plans for future work.
We evaluate the modulation of Cosmic Microwave Background (CMB) polarization using a rapidly-rotating, half-wave plate (HWP) on the Atacama B-Mode Search (ABS). After demodulating the time-ordered-data (TOD), we find a significant reduction of atmosp heric fluctuations. The demodulated TOD is stable on time scales of 500-1000 seconds, corresponding to frequencies of 1-2 mHz. This facilitates recovery of cosmological information at large angular scales, which are typically available only from balloon-borne or satellite experiments. This technique also achieves a sensitive measurement of celestial polarization without differencing the TOD of paired detectors sensitive to two orthogonal linear polarizations. This is the first demonstration of the ability to remove atmospheric contamination at these levels from a ground-based platform using a rapidly-rotating HWP.
Spider is a balloon-borne array of six telescopes that will observe the Cosmic Microwave Background. The 2624 antenna-coupled bolometers in the instrument will make a polarization map of the CMB with approximately one-half degree resolution at 145 GH z. Polarization modulation is achieved via a cryogenic sapphire half-wave plate (HWP) skyward of the primary optic. We have measured millimeter-wave transmission spectra of the sapphire at room and cryogenic temperatures. The spectra are consistent with our physical optics model, and the data gives excellent measurements of the indices of A-cut sapphire. We have also taken preliminary spectra of the integrated HWP, optical system, and detectors in the prototype Spider receiver. We calculate the variation in response of the HWP between observing the CMB and foreground spectra, and estimate that it should not limit the Spider constraints on inflation.
111 - C. Bao , B. Gold , C. Baccigalupi 2011
We study the impact of the spectral dependence of the linear polarization rotation induced by an achromatic half-wave plate on measurements of cosmic microwave background polarization in the presence of astrophysical foregrounds. We focus on the syst ematic effects induced on the measurement of inflationary gravitational waves by uncertainties in the polarization and spectral index of Galactic dust. We find that for the experimental configuration and noise levels of the balloon-borne EBEX experiment, which has three frequency bands centered at 150, 250, and 410 GHz, a crude dust subtraction process mitigates systematic effects to below detectable levels for 10% polarized dust and tensor to scalar ratio of as low as r = 0.01. We also study the impact of uncertainties in the spectral response of the instrument. With a top-hat model of the spectral response for each band, characterized by band-center and band-width, and with the same crude dust subtraction process, we find that these parameters need to be determined to within 1 and 0.8 GHz at 150 GHz; 9 and 2.0 GHz at 250 GHz; and 20 and 14 GHz at 410 GHz, respectively. The approach presented in this paper is applicable to other optical elements that exhibit polarization rotation as a function of frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا