ترغب بنشر مسار تعليمي؟ اضغط هنا

Legendre wavelet collocation method combined with the Gauss--Jacobi quadrature for solving fractional delay-type integro-differential equations

95   0   0.0 ( 0 )
 نشر من قبل Somayeh Nemati
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we present a collocation method based on the Legendre wavelet combined with the Gauss--Jacobi quadrature formula for solving a class of fractional delay-type integro-differential equations. The problem is considered with either initial or boundary conditions and the fractional derivative is described in the Caputo sense. First, an approximation of the unknown solution is considered in terms of the Legendre wavelet basis functions. Then, we substitute this approximation and its derivatives into the considered equation. The Caputo derivative of the unknown function is approximated using the Gauss--Jacobi quadrature formula. By collocating the obtained residual at the well-known shifted Chebyshev points, we get a system of nonlinear algebraic equations. In order to obtain a continuous solution, some conditions are added to the resulting system. Some error bounds are given for the Legendre wavelet approximation of an arbitrary function. Finally, some examples are included to show the efficiency and accuracy of this new technique.

قيم البحث

اقرأ أيضاً

The aim of the present paper is to introduce a new numerical method for solving nonlinear Volterra integro-differential equations involving delay. We apply trapezium rule to the integral involved in the equation. Further, Daftardar-Gejji and Jafari m ethod (DGJ) is employed to solve the implicit equation. Existence-uniqueness theorem is derived for solutions of such equations and the error and convergence analysis of the proposed method is presented. We illustrate efficacy of the newly proposed method by constructing examples.
This paper presents a novel semi-analytical collocation method to solve multi-term variable-order time fractional partial differential equations (VOTFPDEs). In the proposed method it employs the Fourier series expansion for spatial discretization, wh ich transforms the original multi-term VOTFPDEs into a sequence of multi-term variable-order time fractional ordinary differential equations (VOTFODEs). Then these VOTFODEs can be solved by using the recent-developed backward substitution method. Several numerical examples verify the accuracy and efficiency of the proposed numerical approach in the solution of multi-term VOTFPDEs.
In this paper we introduce a numerical method for solving nonlinear Volterra integro-differential equations. In the first step, we apply implicit trapezium rule to discretize the integral in given equation. Further, the Daftardar-Gejji and Jafari tec hnique (DJM) is used to find the unknown term on the right side. We derive existence-uniqueness theorem for such equations by using Lipschitz condition. We further present the error, convergence, stability and bifurcation analysis of the proposed method. We solve various types of equations using this method and compare the error with other numerical methods. It is observed that our method is more efficient than other numerical methods.
90 - X. G. Zhu , Z. B. Yuan , F. Liu 2017
In mathematical physics, the space-fractional diffusion equations are of particular interest in the studies of physical phenomena modelled by L{e}vy processes, which are sometimes called super-diffusion equations. In this article, we develop the diff erential quadrature (DQ) methods for solving the 2D space-fractional diffusion equations on irregular domains. The methods in presence reduce the original equation into a set of ordinary differential equations (ODEs) by introducing valid DQ formulations to fractional directional derivatives based on the functional values at scattered nodal points on problem domain. The required weighted coefficients are calculated by using radial basis functions (RBFs) as trial functions, and the resultant ODEs are discretized by the Crank-Nicolson scheme. The main advantages of our methods lie in their flexibility and applicability to arbitrary domains. A series of illustrated examples are finally provided to support these points.
We extend the Deep Galerkin Method (DGM) introduced in Sirignano and Spiliopoulos (2018) to solve a number of partial differential equations (PDEs) that arise in the context of optimal stochastic control and mean field games. First, we consider PDEs where the function is constrained to be positive and integrate to unity, as is the case with Fokker-Planck equations. Our approach involves reparameterizing the solution as the exponential of a neural network appropriately normalized to ensure both requirements are satisfied. This then gives rise to a partial integro-differential equation (PIDE) where the integral appearing in the equation is handled using importance sampling. Secondly, we tackle a number of Hamilton-Jacobi-Bellman (HJB) equations that appear in stochastic optimal control problems. The key contribution is that these equations are approached in their unsimplified primal form which includes an optimization problem as part of the equation. We extend the DGM algorithm to solve for the value function and the optimal control simultaneously by characterizing both as deep neural networks. Training the networks is performed by taking alternating stochastic gradient descent steps for the two functions, a technique similar in spirit to policy improvement algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا