ترغب بنشر مسار تعليمي؟ اضغط هنا

Information Source Detection with Limited Time Knowledge

86   0   0.0 ( 0 )
 نشر من قبل Xuecheng Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper investigates the problem of utilizing network topology and partial timestamps to detect the information source in a network. The problem incurs prohibitive cost under canonical maximum likelihood estimation (MLE) of the source due to the exponential number of possible infection paths. Our main idea of source detection, however, is to approximate the MLE by an alternative infection path based estimator, the essence of which is to identify the most likely infection path that is consistent with observed timestamps. The source node associated with that infection path is viewed as the estimated source $hat{v}$. We first study the case of tree topology, where by transforming the infection path based estimator into a linear integer programming, we find a reduced search region that remarkably improves the time efficiency. Within this reduced search region, the estimator $hat{v}$ is provably always on a path which we term as emph{candidate path}. This notion enables us to analyze the distribution of $d(v^{ast},hat{v})$, the error distance between $hat{v}$ and the true source $v^{ast}$, on arbitrary tree, which allows us to obtain for the first time, in the literature provable performance guarantee of the estimator under limited timestamps. Specifically, on the infinite $g$-regular tree with uniform sampled timestamps, we get a refined performance guarantee in the sense of a constant bounded $d(v^{ast},hat{v})$. By virtue of time labeled BFS tree, the estimator still performs fairly well when extended to more general graphs. Experiments on both synthetic and real datasets further demonstrate the superior performance of our proposed algorithms.



قيم البحث

اقرأ أيضاً

A rumor spreading in a social network or a disease propagating in a community can be modeled as an infection spreading in a network. Finding the infection source is a challenging problem, which is made more difficult in many applications where we hav e access only to a limited set of observations. We consider the problem of estimating an infection source for a Susceptible-Infected model, in which not all infected nodes can be observed. When the network is a tree, we show that an estimator for the source node associated with the most likely infection path that yields the limited observations is given by a Jordan center, i.e., a node with minimum distance to the set of observed infected nodes. We also propose approximate source estimators for general networks. Simulation results on various synthetic networks and real world networks suggest that our estimators perform better than distance, closeness, and betweenness centrality based heuristics.
Representations of geographic entities captured in popular knowledge graphs such as Wikidata and DBpedia are often incomplete. OpenStreetMap (OSM) is a rich source of openly available, volunteered geographic information that has a high potential to c omplement these representations. However, identity links between the knowledge graph entities and OSM nodes are still rare. The problem of link discovery in these settings is particularly challenging due to the lack of a strict schema and heterogeneity of the user-defined node representations in OSM. In this article, we propose OSM2KG - a novel link discovery approach to predict identity links between OSM nodes and geographic entities in a knowledge graph. The core of the OSM2KG approach is a novel latent, compact representation of OSM nodes that captures semantic node similarity in an embedding. OSM2KG adopts this latent representation to train a supervised model for link prediction and utilises existing links between OSM and knowledge graphs for training. Our experiments conducted on several OSM datasets, as well as the Wikidata and DBpedia knowledge graphs, demonstrate that OSM2KG can reliably discover identity links. OSM2KG achieves an F1 score of 92.05% on Wikidata and of 94.17% on DBpedia on average, which corresponds to a 21.82 percentage points increase in F1 score on Wikidata compared to the best performing baselines.
Social media are massive marketplaces where ideas and news compete for our attention. Previous studies have shown that quality is not a necessary condition for online virality and that knowledge about peer choices can distort the relationship between quality and popularity. However, these results do not explain the viral spread of low-quality information, such as the digital misinformation that threatens our democracy. We investigate quality discrimination in a stylized model of online social network, where individual agents prefer quality information, but have behavioral limitations in managing a heavy flow of information. We measure the relationship between the quality of an idea and its likelihood to become prevalent at the system level. We find that both information overload and limited attention contribute to a degradation in the markets discriminative power. A good tradeoff between discriminative power and diversity of information is possible according to the model. However, calibration with empirical data characterizing information load and finite attention in real social media reveals a weak correlation between quality and popularity of information. In these realistic conditions, the model predicts that high-quality information has little advantage over low-quality information.
93 - Yi Han , Amila Silva , Ling Luo 2021
Recent years have witnessed the significant damage caused by various types of fake news. Although considerable effort has been applied to address this issue and much progress has been made on detecting fake news, most existing approaches mainly rely on the textual content and/or social context, while knowledge-level information---entities extracted from the news content and the relations between them---is much less explored. Within the limited work on knowledge-based fake news detection, an external knowledge graph is often required, which may introduce additional problems: it is quite common for entities and relations, especially with respect to new concepts, to be missing in existing knowledge graphs, and both entity prediction and link prediction are open research questions themselves. Therefore, in this work, we investigate textbf{knowledge-based fake news detection that does not require any external knowledge graph.} Specifically, our contributions include: (1) transforming the problem of detecting fake news into a subgraph classification task---entities and relations are extracted from each news item to form a single knowledge graph, where a news item is represented by a subgraph. Then a graph neural network (GNN) model is trained to classify each subgraph/news item. (2) Further improving the performance of this model through a simple but effective multi-modal technique that combines extracted knowledge, textual content and social context. Experiments on multiple datasets with thousands of labelled news items demonstrate that our knowledge-based algorithm outperforms existing counterpart methods, and its performance can be further boosted by the multi-modal approach.
51 - Calton Pu , Abhijit Suprem , 2020
A rapidly evolving situation such as the COVID-19 pandemic is a significant challenge for AI/ML models because of its unpredictability. %The most reliable indicator of the pandemic spreading has been the number of test positive cases. However, the te sts are both incomplete (due to untested asymptomatic cases) and late (due the lag from the initial contact event, worsening symptoms, and test results). Social media can complement physical test data due to faster and higher coverage, but they present a different challenge: significant amounts of noise, misinformation and disinformation. We believe that social media can become good indicators of pandemic, provided two conditions are met. The first (True Novelty) is the capture of new, previously unknown, information from unpredictably evolving situations. The second (Fact vs. Fiction) is the distinction of verifiable facts from misinformation and disinformation. Social media information that satisfy those two conditions are called live knowledge. We apply evidence-based knowledge acquisition (EBKA) approach to collect, filter, and update live knowledge through the integration of social media sources with authoritative sources. Although limited in quantity, the reliable training data from authoritative sources enable the filtering of misinformation as well as capturing truly new information. We describe the EDNA/LITMUS tools that implement EBKA, integrating social media such as Twitter and Facebook with authoritative sources such as WHO and CDC, creating and updating live knowledge on the COVID-19 pandemic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا