ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear analysis of the fluid-solid transition in a model for ordered biological tissues

129   0   0.0 ( 0 )
 نشر من قبل Preeti Sahu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The rheology of biological tissues is important for their function, and we would like to better understand how single cells control global tissue properties such as tissue fluidity. A confluent tissue can fluidize when cells diffuse by executing a series of cell rearrangements, or T1 transitions. In a disordered 2D vertex model, the tissue fluidizes when the T1 energy barriers disappear as the target shape index approaches a critical value ($s^*_{0} sim 3.81$), and the shear modulus describing the linear response also vanishes at this same critical point. However, the ordered ground states of 2D vertex models become linearly unstable at a lower value of the target shape index (3.72) [1,2]. We investigate whether the ground states of the 2D vertex model are fluid-like or solid-like between 3.72 and 3.81 $-$ does the equation of state for these systems have two branches, like glassy particulate matter, or only one? Using four-cell and many-cell numerical simulations, we demonstrate that for a hexagonal ground state, T1 energy barriers only vanish at $sim 3.81$, indicating that ordered systems have the same critical point as disordered systems. We also develop a simple geometric argument that correctly predicts how non-linear stabilization disappears at $s^*_{0}$ in ordered systems.



قيم البحث

اقرأ أيضاً

The present work presents a density-functional microscopic model of soft biological tissue. The model was based on a prototype molecular structure from experimentally resolved collagen peptide residues and water clusters and has the objective to capt ure some well-known experimental features of soft tissues. It was obtained the optimized geometry, binding and coupling energies and dipole moments. The results concerning the stability of the confined water clusters, the water-water and water-collagen interactions within the CLBM framework were successfully correlated to some important trends observed experimentally in inflammatory tissues.
Surface tension governed by differential adhesion can drive fluid particle mixtures to sort into separate regions, i.e., demix. Does the same phenomenon occur in confluent biological tissues? We begin to answer this question for epithelial monolayers with a combination of theory via a vertex model and experiments on keratinocyte monolayers. Vertex models are distinct from particle models in that the interactions between the cells are shape-based, as opposed to distance-dependent. We investigate whether a disparity in cell shape or size alone is sufficient to drive demixing in bidisperse vertex model fluid mixtures. Surprisingly, we observe that both types of bidisperse systems robustly mix on large lengthscales. On the other hand, shape disparity generates slight demixing over a few cell diameters, a phenomenon we term micro-demixing. This result can be understood by examining the differential energy barriers for neighbor exchanges (T1 transitions). Experiments with mixtures of wild-type and E-cadherin-deficient keratinocytes on a substrate are consistent with the predicted phenomenon of micro-demixing, which biology may exploit to create subtle patterning. The robustness of mixing at large scales, however, suggests that despite some differences in cell shape and size, progenitor cells can readily mix throughout a developing tissue until acquiring means of recognizing cells of different types.
In the theory of weakly non-linear elasticity, Hamilton et al. [J. Acoust. Soc. Am. textbf{116} (2004) 41] identified $W = mu I_2 + (A/3)I_3 + D I_2^2$ as the fourth-order expansion of the strain-energy density for incompressible isotropic solids. Su bsequently, much effort focused on theoretical and experimental developments linked to this expression in order to inform the modeling of gels and soft biological tissues. However, while many soft tissues can be treated as incompressible, they are not in general isotropic, and their anisotropy is associated with the presence of oriented collagen fiber bundles. Here the expansion of $W$ is carried up to fourth-order in the case where there exists one family of parallel fibers in the tissue. The results are then applied to acoustoelasticity, with a view to determining the second- and third-order nonlinear constants by employing small-amplitude transverse waves propagating in a deformed soft tissue.
Mechanical signaling plays a key role in biological processes like embryo development and cancer growth. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with increasing shear rate. To rationalize this non-linear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are respectively generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.
We investigate the two-dimensional melting of biological tissues that are modeled by deformable polymeric particles with multi-body interactions described by the Voronoi model. We identify the existence of the intermediate hexatic phase in this syste m, and the critical scaling of the associated solid-hexatic phase transition with the critical exponent $ uapprox0.65$ for the divergence of the correlation length. Moreover, we clarify the discontinuous nature of the hexatic-liquid phase transition in this system. These findings are achieved by directly analyzing systems spatial configurations with two generic machine learning approaches developed in this work, dubbed scanning-probe via which the possible existence of intermediate phases can be efficiently detected, and information-concealing via which the critical scaling of the correlation length in the vicinity of generic continuous phase transition can be extracted. Our work provides new physical insights into the fundamental nature of the two-dimensional melting of biological tissues, and establishes a new type of generic toolbox to investigate fundamental properties of phase transitions in various complex systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا