ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic chaos, pole-skipping, and regularity

90   0   0.0 ( 0 )
 نشر من قبل Makoto Natsuume
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the pole-skipping phenomenon in holographic chaos. According to the pole-skipping, the energy-density Greens function is not unique at a special point in complex momentum plane. This arises because the bulk field equation has two regular near-horizon solutions at the special point. We study the regularity of two solutions more carefully using curvature invariants. In the upper-half $omega$-plane, one solution, which is normally interpreted as the outgoing mode, is in general singular at the future horizon and produces a curvature singularity. However, at the special point, both solutions are indeed regular. Moreover, the incoming mode cannot be uniquely defined at the special point due to these solutions.



قيم البحث

اقرأ أيضاً

We study the pole-skipping phenomenon of the scalar retarded Greens function in the rotating BTZ black hole background. In the static case, the pole-skipping points are typically located at negative imaginary Matsubara frequencies $omega=-(2pi T)ni$ with appropriate values of complex wave number $q$. But, in a $(1+1)$-dimensional CFT, one can introduce temperatures for left-moving and right-moving sectors independently. As a result, the pole-skipping points $omega$ depend both on left and right temperatures in the rotating background. In the extreme limit, the pole-skipping does not occur in general. But in a special case, the pole-skipping does occur even in the extreme limit, and the pole-skipping points are given by right Matsubara frequencies.
Recently, it is shown that many Greens functions are not unique at special points in complex momentum space using AdS/CFT. This phenomenon is similar to the pole-skipping in holographic chaos, and the special points are typically located at $omega_n = -(2pi T)ni$ with appropriate values of complex wave number $q_n$. We study finite-coupling corrections to special points. As examples, we consider four-derivative corrections to gravitational perturbations and four-dimensional Maxwell perturbations. While $omega_n$ is uncorrected, $q_n$ is corrected at finite coupling. Some special points disappear at particular values of higher-derivative couplings. Special point locations of the Maxwell scalar and vector modes are related to each other by the electromagnetic duality.
We investigate the properties of pole-skipping of the sound channel in which the translational symmetry is broken explicitly or spontaneously. For this purpose, we analyze, in detail, not only the holographic axion model, but also the magnetically ch arged black holes with two methods: the near-horizon analysis and quasi-normal mode computations. We find that the pole-skipping points are related with the chaotic properties, Lyapunov exponent ($lambda_L$) and butterfly velocity ($v_B$), independently of the symmetry breaking patterns. We show that the diffusion constant ($D$) is bounded by $D ,geqslant, v_{B}^2/lambda_{L}$, where $D$ is the energy diffusion (crystal diffusion) bound for explicit (spontaneous) symmetry breaking. We confirm that the lower bound is obtained by the pole-skipping analysis in the low temperature limit.
We study a class of decoherence process which admits a 3 dimensional holographic bulk. Starting from a thermo-field double dual to a wormhole, we prepare another thermo-field double which plays the role of environment. By allowing the energy flow bet ween the original and environment thermo-field double, the entanglement of the original thermo-field double eventually decoheres. We model this decoherence by four-boundary wormhole geometries, and study the time-evolution of the moduli parameters to see the change of the entanglement pattern among subsystems. A notable feature of this holographic decoherence processes is that at the end point of the processes, the correlations of the original thermo-field double are lost completely both classically and also quantum mechanically. We also discuss distinguishability between thermo-field double state and thermo mixed double state, which contains only classical correlations, and construct a code subspace toy model for that.
We study the holographic complexity conjectures for rotating black holes, uncovering a relationship between the complexity of formation and the thermodynamic volume of the black hole. We suggest that it is the thermodynamic volume and not the entropy that controls the complexity of formation of large black holes in both the Complexity Equals Action and Complexity Equals Volume proposals in general. Our proposal reduces to known results involving the entropy in settings where the thermodynamic volume and entropy are not independent, but has broader scope. Assuming a conjectured inequality is obeyed by the thermodynamic volume, we establish that the complexity of formation is bounded from below by the entropy for large black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا