ﻻ يوجد ملخص باللغة العربية
We investigate the pole-skipping phenomenon in holographic chaos. According to the pole-skipping, the energy-density Greens function is not unique at a special point in complex momentum plane. This arises because the bulk field equation has two regular near-horizon solutions at the special point. We study the regularity of two solutions more carefully using curvature invariants. In the upper-half $omega$-plane, one solution, which is normally interpreted as the outgoing mode, is in general singular at the future horizon and produces a curvature singularity. However, at the special point, both solutions are indeed regular. Moreover, the incoming mode cannot be uniquely defined at the special point due to these solutions.
We study the pole-skipping phenomenon of the scalar retarded Greens function in the rotating BTZ black hole background. In the static case, the pole-skipping points are typically located at negative imaginary Matsubara frequencies $omega=-(2pi T)ni$
Recently, it is shown that many Greens functions are not unique at special points in complex momentum space using AdS/CFT. This phenomenon is similar to the pole-skipping in holographic chaos, and the special points are typically located at $omega_n
We investigate the properties of pole-skipping of the sound channel in which the translational symmetry is broken explicitly or spontaneously. For this purpose, we analyze, in detail, not only the holographic axion model, but also the magnetically ch
We study a class of decoherence process which admits a 3 dimensional holographic bulk. Starting from a thermo-field double dual to a wormhole, we prepare another thermo-field double which plays the role of environment. By allowing the energy flow bet
We study the holographic complexity conjectures for rotating black holes, uncovering a relationship between the complexity of formation and the thermodynamic volume of the black hole. We suggest that it is the thermodynamic volume and not the entropy