ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved STEREO simulation with a new gamma ray spectrum of excited gadolinium isotopes using FIFRELIN

74   0   0.0 ( 0 )
 نشر من قبل Aur\\'elie Bonhomme
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The STEREO experiment measures the electron antineutrino spectrum emitted in a research reactor using the inverse beta decay reaction on H nuclei in a gadolinium loaded liquid scintillator. The detection is based on a signal coincidence of a prompt positron and a delayed neutron capture event. The simulated response of the neutron capture on gadolinium is crucial for the comparison with data, in particular in the case of the detection efficiency. Among all stable isotopes, $^{155}$Gd and $^{157}$Gd have the highest cross sections for thermal neutron capture. The excited nuclei after the neutron capture emit gamma rays with a total energy of about 8 MeV. The complex level schemes of $^{156}$Gd and $^{158}$Gd are a challenge for the modeling and prediction of the deexcitation spectrum, especially for compact detectors where gamma rays can escape the active volume. With a new description of the Gd(n,${gamma}$) cascades obtained using the FIFRELIN code, the agreement between simulation and measurements with a neutron calibration source was significantly improved in the STEREO experiment. A database of ten millions of deexcitation cascades for each isotope has been generated and is now available for the user.



قيم البحث

اقرأ أيضاً

A gas electron multiplier (GEM) detector with a gadolinium cathode has been developed to explore its potential application as a neutron detector. It consists of three standard-sized ($10times 10$ cm${}^{2}$) GEM foils and a thin gadolinium plate as t he cathode, which is used as a neutron converter. The neutron detection efficiencies were measured for two different cathode setups and for two different drift gaps. The thermal neutron source at the Korea Research Institute of Standards and Science (KRISS) was used to measure the neutron detection efficiency. Based on the neutron flux measured by KRISS, the neutron detection efficiency of our gadolinium GEM detector was $4.630 pm 0.034(stat.) pm 0.279(syst.) %$.
Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, can produce simultaneous emission of multiple neutrons and high energy gamma-rays. The observation of time correlations between any of these particles i s a significant indicator of the presence of fissionable material. Cosmogenic processes can also mimic these types of correlated signals. However, if the background is sufficiently low and fully characterized, significant changes in the correlated event rate in the presence of a target of interest constitutes a robust signature of the presence of SNM. Since fission emissions are isotropic, adequate sensitivity to these multiplicities requires a high efficiency detector with a large solid angle with respect to the target. Water Cerenkov detectors are a cost-effective choice when large solid angle coverage is required. In order to characterize the neutron detection performance of large-scale water Cerenkov detectors, we have designed and built a 3.5 kL water Cerenkov-based gamma-ray and neutron detector, and modeled the detector response in Geant4 [1]. We report the position-dependent neutron detection efficiency and energy response of the detector, as well as the basic characteristics of the simulation.
We have measured the $gamma$-ray energy spectrum from the thermal neutron capture, ${}^{157}$Gd$(n,gamma){}^{158}$Gd, on an enriched $^{157}$Gd target (Gd$_{2}$O$_{3}$) in the energy range from 0.11 MeV up to about 8 MeV. The target was placed inside the germanium spectrometer of the ANNRI detector at J-PARC and exposed to a neutron beam from the Japan Spallation Neutron Source (JSNS). Radioactive sources ($^{60}$Co, $^{137}$Cs, and $^{152}$Eu) and the reaction $^{35}$Cl($n$,$gamma$) were used to determine the spectrometers detection efficiency for $gamma$ rays at energies from 0.3 to 8.5 MeV. Using a Geant4-based Monte Carlo simulation of the detector and based on our data, we have developed a model to describe the $gamma$-ray spectrum from the thermal ${}^{157}$Gd($n$,$gamma$) reaction. While we include the strength information of 15 prominent peaks above 5 MeV and associated peaks below 1.6 MeV from our data directly into the model, we rely on the theoretical inputs of nuclear level density and the photon strength function of ${}^{158}$Gd to describe the continuum $gamma$-ray spectrum from the ${}^{157}$Gd($n$,$gamma$) reaction. Our model combines these two components. The results of the comparison between the observed $gamma$-ray spectra from the reaction and the model are reported in detail.
UCGretina, a GEANT4 simulation of the GRETINA gamma-ray tracking array of highly-segmented high-purity germanium detectors is described. We have developed a model of the array, in particular of the Quad Module and the capsules, that gives good agreem ent between simulated and measured photopeak efficiencies over a broad range of gamma-ray energies and reproduces the shape of the measured Compton continuum. Both of these features are needed in order to accurately extract gamma-ray yields from spectra collected in in-beam gamma-ray spectroscopy measurements with beams traveling at $v/c gtrsim 0.3$ at the National Superconducting Cyclotron Laboratory and the Facility for Rare Isotope Beams. In the process of developing the model, we determined that millimeter-scale layers of passive germanium surrounding the active volumes of the simulated crystals must be included in order to reproduce measured photopeak efficiencies. We adopted a simple model of effective passive layers and developed heuristic methods of determining passive-layer thicknesses by comparison of simulations and measurements for a single crystal and for the full array. Prospects for future development of the model are discussed.
We demonstrate that the application of an external magnetic field could lead to an improved background rejection in neutrinoless double-beta (0nbb) decay experiments using a high pressure xenon (HPXe) TPC. HPXe chambers are capable of imaging electro n tracks, a feature that enhances the separation between signal events (the two electrons emitted in the 0nbb decay of 136Xe) and background events, arising chiefly from single electrons of kinetic energy compatible with the end-point of the 0nbb decay (Qbb ). Applying an external magnetic field of sufficiently high intensity (in the range of 0.5-1 Tesla for operating pressures in the range of 5-15 atmospheres) causes the electrons to produce helical tracks. Assuming the tracks can be properly reconstructed, the sign (direction) of curvature can be determined at several points along these tracks, and such information can be used to separate signal (0nbb) events containing two electrons producing a track with two different directions of curvature from background (single-electron) events producing a track that should spiral in a single direction. Due to electron multiple scattering, this strategy is not perfectly efficient on an event-by-event basis, but a statistical estimator can be constructed which can be used to reject background events by one order of magnitude at a moderate cost (approx. 30%) in signal efficiency. Combining this estimator with the excellent energy resolution and topological signature identification characteristic of the HPXe TPC, it is possible to reach a background rate of less than one count per ton-year of exposure. Such a low background rate is an essential feature of the next generation of 0nbb experiments, aiming to fully explore the inverse hierarchy of neutrino masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا