ترغب بنشر مسار تعليمي؟ اضغط هنا

Demonstration of PerformanceNet: A Convolutional Neural Network Model for Score-to-Audio Music Generation

212   0   0.0 ( 0 )
 نشر من قبل Yu-Hua Chen
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We present in this paper PerformacnceNet, a neural network model we proposed recently to achieve score-to-audio music generation. The model learns to convert a music piece from the symbolic domain to the audio domain, assigning performance-level attributes such as changes in velocity automatically to the music and then synthesizing the audio. The model is therefore not just a neural audio synthesizer, but an AI performer that learns to interpret a musical score in its own way. The code and sample outputs of the model can be found online at https://github.com/bwang514/PerformanceNet.



قيم البحث

اقرأ أيضاً

386 - Bryan Wang , Yi-Hsuan Yang 2018
Music creation is typically composed of two parts: composing the musical score, and then performing the score with instruments to make sounds. While recent work has made much progress in automatic music generation in the symbolic domain, few attempts have been made to build an AI model that can render realistic music audio from musical scores. Directly synthesizing audio with sound sample libraries often leads to mechanical and deadpan results, since musical scores do not contain performance-level information, such as subtle changes in timing and dynamics. Moreover, while the task may sound like a text-to-speech synthesis problem, there are fundamental differences since music audio has rich polyphonic sounds. To build such an AI performer, we propose in this paper a deep convolutional model that learns in an end-to-end manner the score-to-audio mapping between a symbolic representation of music called the piano rolls and an audio representation of music called the spectrograms. The model consists of two subnets: the ContourNet, which uses a U-Net structure to learn the correspondence between piano rolls and spectrograms and to give an initial result; and the TextureNet, which further uses a multi-band residual network to refine the result by adding the spectral texture of overtones and timbre. We train the model to generate music clips of the violin, cello, and flute, with a dataset of moderate size. We also present the result of a user study that shows our model achieves higher mean opinion score (MOS) in naturalness and emotional expressivity than a WaveNet-based model and two commercial sound libraries. We open our source code at https://github.com/bwang514/PerformanceNet
This paper thoroughly analyses the effect of different input representations on polyphonic multi-instrument music transcription. We use our own GPU based spectrogram extraction tool, nnAudio, to investigate the influence of using a linear-frequency s pectrogram, log-frequency spectrogram, Mel spectrogram, and constant-Q transform (CQT). Our results show that a $8.33$% increase in transcription accuracy and a $9.39$% reduction in error can be obtained by choosing the appropriate input representation (log-frequency spectrogram with STFT window length 4,096 and 2,048 frequency bins in the spectrogram) without changing the neural network design (single layer fully connected). Our experiments also show that Mel spectrogram is a compact representation for which we can reduce the number of frequency bins to only 512 while still keeping a relatively high music transcription accuracy.
Convolutive Non-Negative Matrix Factorization model factorizes a given audio spectrogram using frequency templates with a temporal dimension. In this paper, we present a convolutional auto-encoder model that acts as a neural network alternative to co nvolutive NMF. Using the modeling flexibility granted by neural networks, we also explore the idea of using a Recurrent Neural Network in the encoder. Experimental results on speech mixtures from TIMIT dataset indicate that the convolutive architecture provides a significant improvement in separation performance in terms of BSSeval metrics.
The identification of structural differences between a music performance and the score is a challenging yet integral step of audio-to-score alignment, an important subtask of music information retrieval. We present a novel method to detect such diffe rences between the score and performance for a given piece of music using progressively dilated convolutional neural networks. Our method incorporates varying dilation rates at different layers to capture both short-term and long-term context, and can be employed successfully in the presence of limited annotated data. We conduct experiments on audio recordings of real performances that differ structurally from the score, and our results demonstrate that our models outperform standard methods for structure-aware audio-to-score alignment.
Models for audio source separation usually operate on the magnitude spectrum, which ignores phase information and makes separation performance dependant on hyper-parameters for the spectral front-end. Therefore, we investigate end-to-end source separ ation in the time-domain, which allows modelling phase information and avoids fixed spectral transformations. Due to high sampling rates for audio, employing a long temporal input context on the sample level is difficult, but required for high quality separation results because of long-range temporal correlations. In this context, we propose the Wave-U-Net, an adaptation of the U-Net to the one-dimensional time domain, which repeatedly resamples feature maps to compute and combine features at different time scales. We introduce further architectural improvements, including an output layer that enforces source additivity, an upsampling technique and a context-aware prediction framework to reduce output artifacts. Experiments for singing voice separation indicate that our architecture yields a performance comparable to a state-of-the-art spectrogram-based U-Net architecture, given the same data. Finally, we reveal a problem with outliers in the currently used SDR evaluation metrics and suggest reporting rank-based statistics to alleviate this problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا