ترغب بنشر مسار تعليمي؟ اضغط هنا

Crowdsourced Peer Learning Activity for Internet of Things Education: A Case Study

82   0   0.0 ( 0 )
 نشر من قبل Charith Perera
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Computing devices such as laptops, tablets and mobile phones have become part of our daily lives. End users increasingly know more and more information about these devices. Further, more technically savvy end users know how such devices are being built and know how to choose one over the others. However, we cannot say the same about the Internet of Things (IoT) products. Due to its infancy nature of the marketplace, end users have very little idea about IoT products. To address this issue, we developed a method, a crowdsourced peer learning activity, supported by an online platform (OLYMPUS) to enable a group of learners to learn IoT products space better. We conducted two different user studies to validate that our tool enables better IoT education. Our method guide learners to think more deeply about IoT products and their design decisions. The learning platform we developed is open source and available for the community.



قيم البحث

اقرأ أيضاً

115 - Alon Friedman , Paul Rosen 2021
In visualization education, both science and humanities, the literature is often divided into two parts: the design aspect and the analysis of the visualization. However, we find limited discussion on how to motivate and engage visualization students in the classroom. In the field of Writing Studies, researchers develop tools and frameworks for student peer review of writing. Based on the literature review from the field of Writing Studies, this paper proposes a new framework to implement visualization peer review in the classroom to engage todays students. This framework can be customized for incremental and double-blind review to inspire students and reinforce critical thinking about visualization.
The recent history has witnessed disruptive advances in disciplines related to information and communication technologies that have laid a rich technological ecosystem for the growth and maturity of latent paradigms in this domain. Among them, sensor networks have evolved from the originally conceived set-up where hundreds of nodes with sensing and actuating functionalities were deployed to capture information from their environment and act accordingly (coining the so-called wireless sensor network concept) to the provision of such functionalities embedded in quotidian objects that communicate and work together to collaboratively accomplish complex tasks based on the information they acquire by sensing the environment. This is nowadays a reality, embracing the original idea of an Internet of things (IoT) forged in the late twentieth century, yet featuring unprecedented scales, capabilities and applications ignited by new radio interfaces, communication protocols and intelligent data-based models. This chapter examines the latest findings reported in the literature around these topics, with a clear focus on IoT communications, protocols and platforms, towards ultimately identifying opportunities and trends that will be at the forefront of IoT-related research in the near future.
The Internet of Things (IoT) envisions the creation of an environment where everyday objects (e.g. microwaves, fridges, cars, coffee machines, etc.) are connected to the internet and make users lives more productive, efficient, and convenient. During this process, everyday objects capture a vast amount of data that can be used to understand individuals and their behaviours. In the current IoT ecosystems, such data is collected and used only by the respective IoT solutions. There is no formal way to share data with external entities. We believe this is very efficient and unfair for users. We believe that users, as data owners, should be able to control, manage, and share data about them in any way that they choose and make or gain value out of them. To achieve this, we proposed the Sensing as a Service (S2aaS) model. In this paper, we discuss the Sensing as a Service ecosystem in terms of its architecture, components and related user interaction designs. This paper aims to highlight the weaknesses of the current IoT ecosystem and to explain how S2aaS would eliminate those weaknesses. We also discuss how an everyday user may engage with the S2aaS ecosystem and design challenges.
Human cognitive performance is critical to productivity, learning, and accident avoidance. Cognitive performance varies throughout each day and is in part driven by intrinsic, near 24-hour circadian rhythms. Prior research on the impact of sleep and circadian rhythms on cognitive performance has typically been restricted to small-scale laboratory-based studies that do not capture the variability of real-world conditions, such as environmental factors, motivation, and sleep patterns in real-world settings. Given these limitations, leading sleep researchers have called for larger in situ monitoring of sleep and performance. We present the largest study to date on the impact of objectively measured real-world sleep on performance enabled through a reframing of everyday interactions with a web search engine as a series of performance tasks. Our analysis includes 3 million nights of sleep and 75 million interaction tasks. We measure cognitive performance through the speed of keystroke and click interactions on a web search engine and correlate them to wearable device-defined sleep measures over time. We demonstrate that real-world performance varies throughout the day and is influenced by both circadian rhythms, chronotype (morning/evening preference), and prior sleep duration and timing. We develop a statistical model that operationalizes a large body of work on sleep and performance and demonstrates that our estimates of circadian rhythms, homeostatic sleep drive, and sleep inertia align with expectations from laboratory-based sleep studies. Further, we quantify the impact of insufficient sleep on real-world performance and show that two consecutive nights with less than six hours of sleep are associated with decreases in performance which last for a period of six days. This work demonstrates the feasibility of using online interactions for large-scale physiological sensing.
User privacy concerns are widely regarded as a key obstacle to the success of modern smart cyber-physical systems. In this paper, we analyse, through an example, some of the requirements that future data collection architectures of these systems shou ld implement to provide effective privacy protection for users. Then, we give an example of how these requirements can be implemented in a smart home scenario. Our example architecture allows the user to balance the privacy risks with the potential benefits and take a practical decision determining the extent of the sharing. Based on this example architecture, we identify a number of challenges that must be addressed by future data processing systems in order to achieve effective privacy management for smart cyber-physical systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا