ﻻ يوجد ملخص باللغة العربية
Let $[X,lambda]$ be a principally polarized abelian variety over a finite field with commutative endomorphism ring; further suppose that either $X$ is ordinary or the field is prime. Motivated by an equidistribution heuristic, we introduce a factor $ u_v([X,lambda])$ for each place $v$ of $mathbb Q$, and show that the product of these factors essentially computes the size of the isogeny class of $[X,lambda]$. The derivation of this mass formula depends on a formula of Kottwitz and on analysis of measures on the group of symplectic similitudes, and in particular does not rely on a calculation of class numbers.
These are notes of my lectures at the summer school Higher-dimensional geometry over finite fields in Goettingen, June--July 2007. We present a proof of Tates theorem on homomorphisms of abelian varieties over finite fields (including the $ell=p$ c
In the paper [On superspecial abelian surfaces over finite fields II. J. Math. Soc. Japan, 72(1):303--331, 2020], Tse-Chung Yang and the first two current authors computed explicitly the number $lvert mathrm{SSp}_2(mathbb{F}_q)rvert$ of isomorphism c
Given a natural number n and a number field K, we show the existence of an integer ell_0 such that for any prime number ellgeq ell_0, there exists a finite extension F/K, unramified in all places above ell, together with a principally polarized abeli
We deal with $g$-dimensional abelian varieties $X$ over finite fields. We prove that there is an universal constant (positive integer) $N=N(g)$ that depends only on $g$ that enjoys the following properties. If a certain self-product of $X$ carries an
We construct non-isogenous simple ordinary abelian varieties over an algebraic closure of a finite field with isomorphic endomorphism algebras.