ﻻ يوجد ملخص باللغة العربية
HD113337 is a Main-Sequence F6V field star more massive than the Sun, hosting one (possibly two) radial velocity (RV) giant planet(s) and a cold debris disk (marked by an infrared excess). We used the VEGA interferometer on the CHARA array to measure HD113337 angular diameter, and derived its linear radius using the Gaia parallax. We computed the bolometric flux to derive its effective temperature and luminosity, and we estimated its mass and age using evolutionary tracks. We used Herschel images to partially resolve the outer disk, and high-contrast images of HD113337 with the LBTI to probe the 10-80 au separation range. Finally, we combined the deduced contrast maps with previous RV of the star using the MESS2 software to bring upper mass limits on possible companions at all separations up to 80 au, taking advantage of the constraints on the age and inclination (brought by the fundamental parameter analysis and the disk imaging, respectively). We derive a limb-darkened angular diameter of 0.386 $pm$ 0.009 mas that converts into a linear radius of 1.50 $pm$ 0.04 solar radius. The fundamental parameter analysis leads to an effective temperature of 6774 $pm$ 125 K, and to two possible age solutions: one young within 14-21 Myr and one old within 0.8-1.7 Gyr. We partially resolve the known outer debris disk and model its emission. Our best solution corresponds to a radius of 85 $pm$ 20 au, an extension of 30 $pm$ 20 au and an inclination within 10-30 degrees for the outer disk. The combination of imaging contrast limits, published RV, and our new age and inclination solutions leads to a first possible estimation of the true masses of the planetary companions: $sim 7_{-2}^{+4}$ Jupiter masses for HD113337 b (confirmed companion), and $sim 16_{-3}^{+10}$ Jupiter masses for HD113337 c (candidate). We also constrain possible additional companions at larger separations.
Nearby stars are prime targets for exoplanet searches and characterization using a variety of detection techniques. Combining constraints from the complementary detection methods of high contrast imaging (HCI) and radial velocity (RV) can further con
The G-type star GJ504A is known to host a 3 to 35 MJup companion whose temperature, mass, and projected separation all contribute to make it a test case for the planet formation theories and for atmospheric models of giant planets and light brown dwa
We present a high-contrast imaging search for Pa$beta$ line emission from protoplanets in the PDS~70 system with Keck/OSIRIS integral field spectroscopy. We applied the high-resolution spectral differential imaging technique to the OSIRIS $J$-band da
High-contrast imaging of exoplanets and protoplanetary disks depends on wavefront sensing and correction made by adaptive optics instruments. Classically, wavefront sensing has been conducted at optical wavelengths, which made high-contrast imaging o
Aims: In this work, we discuss a way to combine High Dispersion Spectroscopy and High Contrast Imaging (HDS+HCI). For a planet located at a resolvable angular distance from its host star, the starlight can be reduced up to several orders of magnitude