ﻻ يوجد ملخص باللغة العربية
In this note, we prove blow-up results for semilinear wave models with damping and mass in the scale-invariant case and with nonlinear terms of derivative type. We consider the single equation and the weakly coupled system. In the first case we get a blow-up result for exponents below a certain shift of the Glassey exponent. For the weakly coupled system we find as critical curve a shift of the corresponding curve for the weakly coupled system of semilinear wave equations with the same kind of nonlinearities. Our approach follows the one for the respective classical wave equation by Zhou Yi. In particular, an explicit integral representation formula for a solution of the corresponding linear scale-invariant wave equation, which is derived by using Yagdjians integral transform approach, is employed in the blow-up argument. While in the case of the single equation we may use a comparison argument, for the weakly coupled system an iteration argument is applied.
In this paper, we study the blow-up of solutions for semilinear wave equations with scale-invariant dissipation and mass in the case in which the model is somehow wave-like. A Strauss type critical exponent is determined as the upper bound for the ex
The final goal of this paper is to prove existence of local (strong) solutions to a (fully nonlinear) porous medium equation with blow-up term and nondecreasing constraint. To this end, the equation, arising in the context of Damage Mechanics, is ref
We study the inverse problem of recovery a non-linearity $f(x,u)$, which is compactly supported in $x$, in the semilinear wave equation $u_{tt}-Delta u+ f(x,u)=0$. We probe the medium with either complex or real-valued harmonic waves of wavelength $s
In this paper, we first establish a criterion based on contractive function for the existence of polynomial attractors. This criterion only involves some rather weak compactness associated with the repeated limit inferior and requires no compactness,
The blow up problem of the semilinear scale-invariant damping wave equation with critical Strauss type exponent is investigated. The life span is shown to be: $T(varepsilon)leq Cexp(varepsilon^{-2p(p-1)})$ when $p=p_S(n+mu)$ for $0<mu<frac{n^2+n+2}{n