ترغب بنشر مسار تعليمي؟ اضغط هنا

The star formation history in the solar neighborhood as told by massive white dwarfs

82   0   0.0 ( 0 )
 نشر من قبل Jordi Isern
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jordi Isern




اسأل ChatGPT حول البحث

White dwarfs are the remnants of low and intermediate mass stars. Because of electron degeneracy, their evolution is just a simple gravothermal process of cooling. Recently, thanks to Gaia data, it has been possible to construct the luminosity function of massive (0.9 < M/Msun < 1.1) white dwarfs in the solar neighborhood (d < 100 pc). Since the lifetime of their progenitors is very short, the birth times of both, parents and daughters, are very close and allow to reconstruct the (effective) star formation rate. This rate started growing from zero during the early Galaxy and reached a maximum 6-7 Gyr ago. It declined and ~5 Gyr ago started to climb once more reaching a maximum 2 - 3 Gyr in the past and decreased since then. There are some traces of a recent star formation burst, but the method used here is not appropriate for recently born white dwarfs.

قيم البحث

اقرأ أيضاً

Cyanopolyynes are chains of carbon atoms with an atom of hydrogen and a CN group on either side. They are detected almost everywhere in the ISM, as well as in comets. In the past, they have been used to constrain the age of some molecular clouds, sin ce their abundance is predicted to be a strong function of time. We present an extensive study of the cyanopolyynes distribution in the solar-type protostar IRAS16293-2422 based on TIMASSS IRAM-30m observations. The goals are (i) to obtain a census of the cyanopolyynes in this source and of their isotopologues; (ii) to derive how their abundance varies across the protostar envelope; and (iii) to obtain constraints on the history of IRAS16293-2422. We detect several lines from HC3N and HC5N, and report the first detection of DC3N, in a solar-type protostar. We found that the HC3N abundance is roughly constant (~1.3x10^(-11)) in the outer cold envelope of IRAS16293-2422, and it increases by about a factor 100 in the inner region where Tdust>80K. The HC5N has an abundance similar to HC3N in the outer envelope and about a factor of ten lower in the inner region. The HC3N abundance derived in the inner region, and where the increase occurs, also provide strong constraints on the time taken for the dust to warm up to 80K, which has to be shorter than ~10^3-10^4yr. Finally, the cyanoacetylene deuteration is about 50% in the outer envelope and <5$% in the warm inner region. The relatively low deuteration in the warm region suggests that we are witnessing a fossil of the HC3N abundantly formed in the tenuous phase of the pre-collapse and then frozen into the grain mantles at a later phase. The accurate analysis of the cyanopolyynes in IRAS16293-2422 unveils an important part of its past story. It tells us that IRAS16293-2422 underwent a relatively fast (<10^5yr) collapse and a very fast (<10^3-10^4yr) warming up of the cold material to 80K.
We present an analysis of the most massive white dwarf candidates in the Montreal White Dwarf Database 100 pc sample. We identify 25 objects that would be more massive than $1.3~M_{odot}$ if they had pure H atmospheres and CO cores, including two out liers with unusually high photometric mass estimates near the Chandrasekhar limit. We provide follow-up spectroscopy of these two white dwarfs and show that they are indeed significantly below this limit. We expand our model calculations for CO core white dwarfs up to $M=1.334 M_odot$, which corresponds to the high-density limit of our equation-of-state tables, $rho = 10^9$ g cm$^{-3}$. We find many objects close to this maximum mass of our CO core models. A significant fraction of ultramassive white dwarfs are predicted to form through binary mergers. Merger populations can reveal themselves through their kinematics, magnetism, or rapid rotation rates. We identify four outliers in transverse velocity, four likely magnetic white dwarfs (one of which is also an outlier in transverse velocity), and one with rapid rotation, indicating that at least 8 of the 25 ultramassive white dwarfs in our sample are likely merger products.
182 - Junhao Liu 2020
We present 1.3 mm ALMA dust polarization observations at a resolution of $sim$0.02 pc of three massive molecular clumps, MM1, MM4, and MM9, in the infrared dark cloud G28.34+0.06. With the sensitive and high-resolution continuum data, MM1 is resolved into a cluster of condensations. The magnetic field structure in each clump is revealed by the polarized emission. We found a trend of decreasing polarized emission fraction with increasing Stokes $I$ intensities in MM1 and MM4. Using the angular dispersion function method (a modified Davis-Chandrasekhar-Fermi method), the plane-of-sky magnetic field strength in two massive dense cores, MM1-Core1 and MM4-Core4, are estimated to be $sim$1.6 mG and $sim$0.32 mG, respectively. textbf{The ordered magnetic energy is found to be smaller than the turbulent energy in the two cores, while the total magnetic energy is found to be comparable to the turbulent energy.} The total virial parameters in MM1-Core1 and MM4-Core4 are calculated to be $sim$0.76 and $sim$0.37, respectively, suggesting that massive star formation does not start in equilibrium. Using the polarization-intensity gradient-local gravity method, we found that the local gravity is closely aligned with intensity gradient in the three clumps, and the magnetic field tends to be aligned with the local gravity in MM1 and MM4 except for regions near the emission peak, which suggests that the gravity plays a dominant role in regulating the gas collapse. Half of the outflows in MM4 and MM9 are found to be aligned within 10$^{circ}$ of the condensation-scale ($<$0.05 pc) magnetic field, indicating that the magnetic field could play an important role from condensation to disk scale in the early stage of massive star formation. We also found that the fragmentation in MM1-Core1 cannot be solely explained by thermal Jeans fragmentation or turbulent Jeans fragmentation.
We report the discovery of three nearby old halo white dwarf candidates in the Sloan Digital Sky Survey (SDSS), including two stars in a common proper motion binary system. These candidates are selected from our 2800 square degree proper motion surve y on the Bok and U.S. Naval Observatory Flagstaff Station 1.3m telescopes, and they display proper motions of 0.4-0.5 arcsec/yr. Follow-up MMT spectroscopy and near-infrared photometry demonstrate that all three objects are hydrogen-dominated atmosphere white dwarfs with Teff = 3700 - 4100 K. For average mass white dwarfs, these temperature estimates correspond to cooling ages of 9-10 Gyr, distances of 70-80 pc, and tangential velocities of 140-200 km/s. Based on the UVW space velocities, we conclude that they most likely belong to the halo. Furthermore, the combined main-sequence and white dwarf cooling ages are 10-11 Gyr. Along with SDSS J1102+4113, they are the oldest field white dwarfs currently known. These three stars represent only a small fraction of the halo white dwarf candidates in our proper motion survey, and they demonstrate that deep imaging surveys like the Pan-STARRS and Large Synoptic Survey Telescope should find many old thick disk and halo white dwarfs that can be used to constrain the age of the Galactic thick disk and halo.
Massive stars can be found in wide (hundreds to thousands AU) binaries with other massive stars. We use $N$-body simulations to show that any bound cluster should always have approximately one massive wide binary: one will probably form if none are p resent initially; and probably only one will survive if more than one are present initially. Therefore any region that contains many massive wide binaries must have been composed of many individual subregions. Observations of Cyg OB2 show that the massive wide binary fraction is at least a half (38/74) which suggests that Cyg OB2 had at least 30 distinct massive star formation sites. This is further evidence that Cyg OB2 has always been a large, low-density association. That Cyg OB2 has a normal high-mass IMF for its total mass suggests that however massive stars form they randomly sample the IMF (as the massive stars did not know about each other).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا