ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbitally resolved superconductivity in real space: FeSe

99   0   0.0 ( 0 )
 نشر من قبل Fang Yang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-orbital superconductors combine unconventional pairing with complex band structures, where different orbitals in the bands contribute to a multitude of superconducting gaps. We here demonstrate a fresh approach using low-temperature scanning tunneling microscopy (LT-STM) to resolve the contributions of different orbitals to superconductivity. This approach is based on STMs capability to resolve the local density of states (LDOS) with a combined high energy and sub unit-cell resolution. This technique directly determines the orbitals on defect free crystals without the need for scatters on the surface and sophisticated quasi-particle interference (QPI) measurements. Taking bulk FeSe as an example, we directly resolve the superconducting gaps within the units cell using a 30 mK STM. In combination with density functional theory calculations, we are able to identify the orbital character of each gap.


قيم البحث

اقرأ أيضاً

We provide a band structure with low-energy properties consistent with recent photoemission and quantum oscillations measurements on FeSe, assuming mean-field like s and/or d-wave orbital ordering at the structural transition. We show how the resulti ng model provides a consistent explanation of the temperature dependence of the measured Knight shift and the spin-relaxation rate. Furthermore, the superconducting gap structure obtained from spin fluctuation theory exhibits nodes on the electron pockets, consistent with the V-shaped density of states obtained by tunneling spectroscopy on this material, and the temperature dependence of the London penetration depth. Our studies prove that the recent experimental observations of the electronic properties of FeSe are consistent with orbital order, but leave open the microscopic origin of the unusual band structure of this material.
Despite many ARPES investigations of iron pnictides, the structure of the electron pockets is still poorly understood. By combining ARPES measurements in different experimental configurations, we clearly resolve their elliptic shape. Comparison with band calculation identify a deep electron band with the dxy orbital and a shallow electron band along the perpendicular ellipse axis with the dxz/dyz orbitals. We find that, for both electron and hole bands, the lifetimes associated with dxy are longer than for dxz/dyz. This suggests that the two types of orbitals play different roles in the electronic properties and that their relative weight is a key parameter to determine the ground state.
The cuprates and iron-based high-temperature superconductors share many common features: layered strongly anisotropic crystal structure, strong electronic correlations, interplay between different types of electronic ordering, the intrinsic spatial i nhomogeneity due to doping. The understanding of complex interplay between these factors is crucial for a directed search of new high-temperature superconductors. Here we show the appearance of inhomogeneous gossamer superconductivity in bulk FeSe compound at ambient pressure and at temperature 5 times higher than its zero-resistance $T_c$. This discovery helps to understand numerous remarkable superconducting properties of FeSe. We also find and prove a general property: if inhomogeneous superconductivity in a anisotropic conductor first appears in the form of isolated superconducting islands, it reduces electric resistivity anisotropically with maximal effect along the least conducting axis. This gives a simple and very general tool to detect inhomogeneous superconductivity in anisotropic compounds, which is critically important to study the onset of high-temperature superconductivity.
One of central issues in iron-based superconductors is the role of structural change to the superconducting transition temperature (T_c). It was found in FeSe that the lattice strain leads to a drastic increase in T_c, accompanied by suppression of n ematic order. By angle-resolved photoemission spectroscopy on tensile- or compressive-strained and strain-free FeSe, we experimentally show that the in-plane strain causes a marked change in the energy overlap (DeltaE_{h-e}) between the hole and electron pockets in the normal state. The change in DeltaE_{h-e} modifies the Fermi-surface volume, leading to a change in T_c. Furthermore, the strength of nematicity is also found to be characterized by DeltaE_{h-e}. These results suggest that the key to understanding the phase diagram is the fermiology and interactions linked to the semimetallic band overlap.
The recent discovery of superconductivity with relatively high transition temperature Tc in the layered iron-based quaternary oxypnictides La[ O1-xFx] FeAs was a real surprise. The excitement generated can be seen by the number of subsequent works pu blished within a very short period of time. Although there exists superconductivity in alloy that contains Fe element, LaOMPn (with M= Fe, Ni; and Pn=P and As) is the first system where Fe-element plays the key role to the occurrence of superconductivity. LaOMPn has a layered crystal structure with an Fe-based plane. It is quite natural to ask whether there exists other Fe based planar compounds that exhibit superconductivity. Here we report the observation of superconductivity with zero resistance transition temperature at 8K in the PbO-type alpha-FeSe compound. Although FeSe has been studied quite extensively, a key observation is that the clean superconducting phase exists only in those samples prepared with intentional Se deficiency. What is truly striking, is that this compound has the same, perhaps simpler, planar crystal sublattice as the layered oxypnictides. Furthermore, FeSe is, compared with LaOFeAs, much easier to handle and fabricate. In view of the abundance of compounds with PbO type structure, this result opens a new route to the search for unconventional superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا