ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the pulsar population of Terzan 5 via spectral modeling

204   0   0.0 ( 0 )
 نشر من قبل Hambeleleni Ndiyavala
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Terzan 5 is the only Galactic globular cluster that has plausibly been detected at very-high energies by the High Energy Stereoscopic System. It has an unexpectedly asymmetric very-high-energy morphology that is offset from the cluster center, in addition to a large-scale, offset radio structure and compact diffuse X-ray emission associated with this cluster. We present new data from the Fermi Large Area Telescope on this source. We model the updated broadband spectral energy distribution, attributing this to cumulative pulsed emission from a population of embedded millisecond pulsars as well as unpulsed emission from the interaction of their leptonic winds with the ambient magnetic and soft-photon fields. In particular, our model invokes unpulsed synchrotron and inverse Compton components to model the radio and TeV data, cumulative pulsed curvature radiation to fit the Fermi data, and explains the hard Chandra X-ray spectrum via a new cumulative synchrotron component from electron-positron pairs within the pulsar magnetospheres that has not been implemented before. We find reasonable spectral fits for plausible model parameters. We also derive constraints on the millisecond pulsar luminosity function using the diffuse X-ray data and the Chandra sensitivity. Future higher-quality spectral and spatial data will help discriminate between competing scenarios (such as dark matter annihilation, white dwarf winds or hadronic interactions) proposed for the broadband emission as well as constrain degenerate model parameters.

قيم البحث

اقرأ أيضاً

We present an analysis of 745.6 ks of archival Chandra X-ray Observatory Advanced CCD Imaging Spectrometer data accumulated between 2000 and 2016 of the millisecond pulsar (MSP) population in the rich Galactic globular cluster Terzan 5. Eight of the 37 MSPs with precise positions are found to have plausible X-ray source matches. Despite the deep exposure, the remaining MSPs are either marginally detected or have no obvious X-ray counterparts, which can be attributed to the typically soft thermal spectra of rotation-powered MSPs, which are strongly attenuated by the high intervening absorbing column (~$10^{22}$ cm$^{-2}$) towards the cluster, and in some instances severe source crowding/blending. For the redback MSP binaries, PSRs J1748-2446P and J1748-2446ad, and the black widow binary PSRs J1748-2446O, we find clear evidence for large-amplitude X-ray variability at the orbital period consistent with an intrabinary shock origin. The third redback MSP in the cluster, PSR J1748-2446A, shows large amplitude variations in flux on time scales of years, possibility due to state transitions or intense flaring episodes from the secondary star.
Transitional millisecond pulsars are accreting millisecond pulsars that switch between accreting X-ray binary and millisecond radio pulsar states. Only a handful of these objects have been identified so far. Terzan 5 CX1 is a variable hard X-ray sour ce in the globular cluster Terzan 5. In this paper, we identify a radio counterpart to CX1 in deep Very Large Array radio continuum data. Chandra observations over the last fourteen years indicate that CX1 shows two brightness states: in 2003 and 2016 the source was the brightest X-ray source in the cluster (at L$_X sim 10^{33}$ erg s$^{-1}$), while in many intermediate observations, its luminosity was almost an order of magnitude lower. We analyze all available X-ray data of CX1, showing that the two states are consistent with the spectral and variability properties observed for the X-ray active and radio pulsar states of known transitional millisecond pulsars. Finally, we discuss the prospects for the detection of CX1 as a radio pulsar in existing timing data.
We study the spectral state evolution of the Terzan 5 transient neutron star low-mass X-ray binary IGR J17480-2446, and how the best-fit spectral parameters and burst properties evolved with these states, using the Rossi X-ray Timing Explorer data. A s reported by other authors, this is the second source which showed transitions between atoll state and `Z state. We find large scale hysteresis in the almost `C-like hardness-intensity track of the source in the atoll state. This discovery is likely to provide a missing piece of the jigsaw puzzle involving various types of hardness-intensity tracks from `q-shaped for Aquila X-1, 4U 1608-52, and many black holes to `C-shaped for many atoll sources. Furthermore, the regular pulsations, a diagonal transition between soft and hard states, and the large scale hysteresis observed from IGR J17480-2446 argue against some of the previous suggestions involving magnetic field about atolls and millisecond pulsars. Our results also suggest that the nature of spectral evolution throughout an outburst does not, at least entirely, depend on the peak luminosity of the outburst. Besides, the source took at least a month to trace the softer banana state, as opposed to a few hours to a day, which is typical for an atoll source. In addition, while the soft colour usually increases with intensity in the softer portion of an atoll source, IGR J17480-2446 showed an opposite behaviour. From the detailed spectral fitting we conclude that a blackbody+powerlaw model is the simplest one, which describes the source continuum spectra well throughout the outburst. We find that these two spectral components were plausibly connected with each other, and they worked together to cause the source state evolution. (Truncated).
We report on 6 RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480-2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosit y neutron star low-mass X-ray binaries, with a quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz QPO and broad band noise. Using well known frequency-frequency correlations, we identify the 35-50 Hz QPOs as the horizontal branch oscillations (HBO), which were previously suggested to be due to Lense-Thirring precession. As IGR J17480-2446 spins more than an order of magnitude more slowly than any of the other neutron stars where these QPOs were found, this QPO can not be explained by frame dragging. By extension, this casts doubt on the Lense-Thirring precession model for other low-frequency QPOs in neutron-star and perhaps even black-hole systems.
291 - Jon M. Miller 2011
Accretion disk winds are revealed in Chandra gratings spectra of black holes. The winds are hot and highly ionized (typically composed of He-like and H-like charge states), and show modest blue-shifts. Similar line spectra are sometimes seen in dippi ng low-mass X-ray binaries, which are likely viewed edge-on; however, that absorption is tied to structures in the outer disk, and blue-shifts are not typically observed. Here we report the detection of blue-shifted He-like Fe XXV (3100 +/- 400 km/s) and H-like Fe XXVI (1000 +/- 200 km/s) absorption lines in a Chandra/HETG spectrum of the transient pulsar and low-mass X-ray binary IGR J17480-2446 in Terzan 5. These features indicate a disk wind with at least superficial similarities to those observed in stellar-mass black holes. The wind does not vary strongly with numerous weak X-ray bursts or flares. A broad Fe K emission line is detected in the spectrum, and fits with different line models suggest that the inner accretion disk in this system may be truncated. If the stellar magnetic field truncates the disk, a field strength of B = 0.7-4.0 E+9 Gauss is implied, which is in line with estimates based on X-ray timing techniques. We discuss our findings in the context of accretion flows onto neutron stars and stellar-mass black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا