ﻻ يوجد ملخص باللغة العربية
We employ the minimal geometric deformation approach to gravitational decoupling (MGD- decoupling) in order to build an exact anisotropic version of the Schwarzschild interior solution in a space-time with cosmological constant. Contrary to the well-known Schwarzschild interior, the matter density in the new solution is not uniform and possesses subluminal sound speed. It therefore satisfies all standard physical requirements for a candidate astrophysical object.
Using the gravitational decoupling by the minimal geometric deformation approach, we build an anisotropic version of the well-known Tolman VII solution, determining an exact and physically acceptable interior two-fluid solution that can represent beh
The construction of exact linearized solutions to the Einstein equations within the Bondi-Sachs formalism is extended to the case of linearization about de Sitter spacetime. The gravitational wave field measured by distant observers is constructed, l
We study the behavior of the quasinormal modes (QNMs) of massless and massive linear waves on Schwarzschild-de Sitter black holes as the black hole mass tends to 0. Via uniform estimates for a degenerating family of ODEs, we show that in bounded subs
de Sitter cosmological horizons are known to exhibit thermodynamic properties similar to black hole horizons. In this work we study causal set de Sitter horizons, using Sorkins spacetime entanglement entropy (SSEE) formula, for a conformally coupled
We compute the quasinormal spectra for scalar, Dirac and electromagnetic perturbations of the Schwarzschild-de Sitter geometry in the framework of scale-dependent gravity, which is one of the current approaches to quantum gravity. Adopting the widely