ترغب بنشر مسار تعليمي؟ اضغط هنا

A Massive Cluster at z = 0.288 Caught in the Process of Formation: The Case of Abell 959

78   0   0.0 ( 0 )
 نشر من قبل Laura Birzan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. B^irzan




اسأل ChatGPT حول البحث

The largest galaxy clusters are observed still to be forming through major cluster-cluster mergers, often showing observational signatures such as radio relics and giant radio haloes. Using LOFAR Two-meter Sky Survey data, we present new detections of both a radio halo (with a spectral index of $alpha_{143}^{1400}=1.48^{+0.06}_{-0.23}$) and a likely radio relic in Abell 959, a massive cluster at a redshift of z=0.288. Using a sample of clusters with giant radio haloes from the literature (80 in total), we show that the radio halo in A959 lies reasonably well on the scaling relations between the thermal and non-thermal power of the system. Additionally, we find evidence that steep-spectrum haloes tend to reside in clusters with high X-ray luminosities relative to those expected from cluster LM scaling relations, indicating that such systems may preferentially lie at an earlier stage of the merger, consistent with the theory that some steep-spectrum haloes result from low-turbulence mergers. Lastly, we find that halo systems containing radio relics tend to lie at lower X-ray luminosities, relative to those expected from cluster LM scaling relations, for a given halo radio power than those without relics, suggesting that the presence of relics indicates a later stage of the merger, in line with simulations.



قيم البحث

اقرأ أيضاً

244 - J. M. Lotz 2011
We present the recent merger history of massive galaxies in a spectroscopically-confirmed proto-cluster at z=1.62. Using HST WFC3 near-infrared imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), we select clust er galaxies and z ~ 1.6 field galaxies with M_star >= 3 x 10^10 M_sun, and determine the frequency of double nuclei or close companions with projected separations less than 20 kpc co-moving and stellar mass ratios between 1:1 and roughly 10:1. We find that four out of five spectroscopically-confirmed massive proto-cluster galaxies have double nuclei, and 42 +13/-25 % of all M_star >= 3 x 10^10 M_sun cluster candidates are either in close pair systems or have double nuclei. In contrast, only 4.5 +/- 2.6% of the field galaxies are in close pair/double nuclei systems. The implied merger rate per massive galaxy in the proto-cluster is 3-10 times higher than the merger rate of massive field galaxies at z ~ 1.6, depending upon the assumed mass ratios. Close pairs in the cluster have minor merger stellar mass ratios (M_primary:M_satellite ~ 6:1), while the field pairs are typically major mergers with stellar mass ratios between 1:1 and 4:1. At least half of the cluster mergers are dissipationless, as indicated by their red colors and low 24 micron fluxes. Two of the double-nucleated cluster members have X-ray detected AGN with L_x > 10^43 erg/s, and are strong candidates for dual or offset super-massive black holes. We conclude that the massive z = 1.62 proto-cluster galaxies are undergoing accelerated assembly relative to the field population, and discuss the implications for galaxy evolution in proto-cluster environments.
217 - C.M. Casey , A. Cooray , P. Capak 2015
Numerical simulations of cosmological structure formation show that the Universes most massive clusters, and the galaxies living in those clusters, assemble rapidly at early times (2.5 < z < 4). While more than twenty proto-clusters have been observe d at z > 2 based on associations of 5-40 galaxies around rare sources, the observational evidence for rapid cluster formation is weak. Here we report observations of an asymmetric, filamentary structure at z = 2.47 containing seven starbursting, submillimeter-luminous galaxies and five additional AGN within a comoving volume of 15000 Mpc$^{3}$. As the expected lifetime of both the luminous AGN and starburst phase of a galaxy is ~100 Myr, we conclude that these sources were likely triggered in rapid succession by environmental factors, or, alternatively, the duration of these cosmologically rare phenomena is much longer than prior direct measurements suggest. The stellar mass already built up in the structure is $sim10^{12}M_{odot}$ and we estimate that the cluster mass will exceed that of the Coma supercluster at $z sim 0$. The filamentary structure is in line with hierarchical growth simulations which predict that the peak of cluster activity occurs rapidly at z > 2.
Star-formation in the galaxy populations of local massive clusters is reduced with respect to field galaxies, and tends to be suppressed in the core region. Indications of a reversal of the star-formation--density relation have been observed in a few z >1.4 clusters. Using deep imaging from 100-500um from PACS and SPIRE onboard Herschel, we investigate the infrared properties of spectroscopic and photo-z cluster members, and of Halpha emitters in XMMU J2235.3-2557, one of the most massive, distant, X-ray selected clusters known. Our analysis is based mostly on fitting of the galaxies spectral energy distribution in the rest-frame 8-1000um. We measure total IR luminosity, deriving star formation rates (SFRs) ranging from 89-463 Msun/yr for 13 galaxies individually detected by Herschel, all located beyond the core region (r >250 kpc). We perform a stacking analysis of nine star-forming members not detected by PACS, yielding a detection with SFR=48 Msun/yr. Using a color criterion based on a star-forming galaxy SED at the cluster redshift we select 41 PACS sources as candidate star-forming cluster members. We characterize a population of highly obscured SF galaxies in the outskirts of XMMU J2235.3-2557. We do not find evidence for a reversal of the SF-density relation in this massive, distant cluster.
We present composite 3.6 and 4.5 micron luminosity functions for cluster galaxies measured from the Spitzer Deep, Wide-Field Survey (SDWFS) for 0.3<z<2. We compare the evolution of m* for these luminosity functions to models for passively evolving st ellar populations to constrain the primary epoch of star formation in massive cluster galaxies. At low redshifts (z < 1.3) our results agree well with models with no mass assembly and passively evolving stellar populations with a luminosity-weighted mean formation redshift zf=2.4 assuming a Kroupa initial mass function (IMF). We conduct a thorough investigation of systematic biases that might influence our results, and estimate systematic uncertainites of Delta zf=(+0.16-0.18) (model normalization), Delta zf=(+0.40-0.05) (alpha), and Delta zf=(+0.30-0.45) (choice of stellar population model). For a Salpeter type IMF, the typical formation epoch is thus strongly constrained to be z ~2-3. Higher formation redshifts can only be made consistent with the data if one permits an evolving IMF that is bottom-light at high redshift, as suggested by van Dokkum et al 2008. At high redshift (z > 1.3) we also witness a statistically significant (>5sigma) disagreement between the measured luminosity function and the continuation of the passive evolution model from lower redshifts. After considering potential systematic biases that might influence our highest redshift data points, we interpret the observed deviation as potential evidence for ongoing mass assembly at this epoch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا