ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional repulsive Fermi polarons with short and long-range interactions

73   0   0.0 ( 0 )
 نشر من قبل Ra\\'ul Bomb\\'in
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the repulsive polaron problem in a two-component two-dimensional system of fermionic atoms. We use two different interaction models: a short-range (hard-disk) potential and a dipolar potential. In our approach, all the atoms have the same mass and we consider the system to be composed of a uniform bath of a single species and a single atomic impurity. We use the diffusion Monte Carlo method to evaluate polaron properties such as its chemical potential and pair distribution functions, together with a discussion on the deficit of volume induced by the impurity. We also evaluate observables that allow us to determine the validity of the quasi-particle picture: the quasi-particle residue and the effective mass of the polaron. Employing two different potentials allows us to identify the universality regime, where the properties depend only on the gas parameter $n a_s^2$ fixed by the bath density and the two-dimensional scattering length.

قيم البحث

اقرأ أيضاً

We consider trapped bosons with contact interactions as well as Coulomb repulsion or gravitational attraction in one spatial dimension. The exact ground state energy and wave function are identified in closed form together with a rich phase diagram, unveiled by Monte Carlo methods, with crossovers between different regimes. A trapped McGuire quantum soliton describes the attractive case. Weak repulsion results in an incompressible Laughlin-like fluid with flat density, well reproduced by a Gross-Pitaevskii equation with long-range interactions. Higher repulsion induces Friedel oscillation and the eventual formation of a Wigner crystal.
We perform a theoretical study into how dipole-dipole interactions modify the properties of superfluid vortices within the context of a two-dimensional atomic Bose gas of co-oriented dipoles. The reduced density at a vortex acts like a giant anti-dip ole, changing the density profile and generating an effective dipolar potential centred at the vortex core whose most slowly decaying terms go as $1/rho^2$ and $ln(rho)/rho^3$. These effects modify the vortex-vortex interaction which, in particular, becomes anisotropic for dipoles polarized in the plane. Striking modifications to vortex-vortex dynamics are demonstrated, i.e. anisotropic co-rotation dynamics and the suppression of vortex annihilation.
Ultracold Fermi gases with tuneable interactions represent a unique test bed to explore the many-body physics of strongly interacting quantum systems. In the past decade, experiments have investigated a wealth of intriguing phenomena, and precise mea surements of ground-state properties have provided exquisite benchmarks for the development of elaborate theoretical descriptions. Metastable states in Fermi gases with strong repulsive interactions represent an exciting new frontier in the field. The realization of such systems constitutes a major challenge since a strong repulsive interaction in an atomic quantum gas implies the existence of a weakly bound molecular state, which makes the system intrinsically unstable against decay. Here, we exploit radio-frequency spectroscopy to measure the complete excitation spectrum of fermionic 40K impurities resonantly interacting with a Fermi sea of 6Li atoms. In particular, we show that a well-defined quasiparticle exists for strongly repulsive interactions. For this repulsive polaron we measure its energy and its lifetime against decay. We also probe its coherence properties by measuring the quasiparticle residue. The results are well described by a theoretical approach that takes into account the finite effective range of the interaction in our system. We find that a non-zero range of the order of the interparticle spacing results in a substantial lifetime increase. This major benefit for the stability of the repulsive branch opens up new perspectives for investigating novel phenomena in metastable, repulsively interacting fermion systems.
We exploit a time-resolved pump-probe spectroscopic technique to study the out-of-equilibrium dynamics of an ultracold two-component Fermi gas, selectively quenched to strong repulsion along the upper branch of a broad Feshbach resonance. For critica l interactions, we find the rapid growth of short-range anti-correlations between repulsive fermions to initially overcome concurrent pairing processes. At longer evolution times, these two competing mechanisms appear to macroscopically coexist in a short-range correlated state of fermions and pairs, unforeseen thus far. Our work provides fundamental insights into the fate of a repulsive Fermi gas, and offers new perspectives towards the exploration of complex dynamical regimes of fermionic matter.
76 - S. Pilati , G. Orso , G. Bertaina 2021
The ground-state properties of two-component repulsive Fermi gases in two dimensions are investigated by means of fixed-node diffusion Monte Carlo simulations. The energy per particle is determined as a function of the intercomponent interaction stre ngth and of the population imbalance. The regime of universality in terms of the s-wave scattering length is identified by comparing results for hard-disk and for soft-disk potentials. In the large imbalance regime, the equation of state turns out to be well described by a Landau-Pomeranchuk functional for two-dimensional polarons. To fully characterize this expansion, we determine the polarons effective mass and their coupling parameter, complementing previous studies on their chemical potential. Furthermore, we extract the magnetic susceptibility from low-imbalance data, finding only small deviations from the mean-field prediction. While the mean-field theory predicts a direct transition from a paramagnetic to a fully ferromagnetic phase, our diffusion Monte Carlo results suggest that the partially ferromagnetic phase is stable in a narrow interval of the interaction parameter. This finding calls for further analyses on the effects due to the fixed-node constraint.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا