ﻻ يوجد ملخص باللغة العربية
The adsorption and diffusion of H atoms on beta-PtO2(001) surface have been studied using first-principles calculations. The chemisorbed H atoms are found to bind preferentially on the top sites of O atoms due to the much larger adsorption energies with comparison to adsorption atop Pt atoms. The calculated energy barriers along the optimal diffusion paths are comparable with that of H diffusion on Pt(111). Within the WKB approximation, the nuclear quantum effects (NQEs) along the diffusion paths are investigated. It turns out that the NQEs are significant for the surface diffusion of H at room temperature and play a dominant role in cryogenic conditions.
We show how the path-integral formulation of quantum statistical mechanics can be used to construct practical {em ab initio} techniques for computing the chemical potential of molecules adsorbed on surfaces, with full inclusion of quantum nuclear eff
The first principles density functional theory (DFT) is applied to study effects of molecular adsorption on optical losses of silver (111) surface. The ground states of the systems including water, methanol, and ethanol molecules adsorbed on Ag (111)
We report a first-principles calculation that models the effect of iron (Fe) atoms on the adsorption of a tungsten (W) atom on W(100) surfaces. The adsorption of a W atom on a clean W(100) surface is compared with that of a W atom on a W(100) surface
The adsorption and diffusion of F2 molecules on pristine graphene have been studied using first-principles calculations. For the diffusion of F2 from molecular state in gas phase to the dissociative adsorption state on graphene surface, a kinetic bar
The interaction of CO with the Fe3O4(001)-(rt2xrt2)R45{deg} surface was studied using temperature programmed desorption (TPD), scanning tunneling microscopy (STM) and x-ray photoelectron spectroscopy (XPS), the latter both under ultrahigh vacuum (UHV