Cartesian fibrations were originally defined by Lurie in the context of quasi-categories and are commonly used in $(infty,1)$-category theory to study presheaves valued in $(infty,1)$-categories. In this work we define and study fibrations modeling p
resheaves valued in simplicial spaces and their localizations. This includes defining a model structure for these fibrations and giving effective tools to recognize its fibrations and weak equivalences. This in particular gives us a new method to construct Cartesian fibrations via complete Segal spaces. In addition to that, it allows us to define and study fibrations modeling presheaves of Segal spaces.
We prove that four different ways of defining Cartesian fibrations and the Cartesian model structure are all Quillen equivalent: On marked simplicial sets, on bisimplicial spaces, on bisimplicial sets, on marked simplicial spaces. The main way to pro
ve these equivalences is by using the Quillen equivalences between quasi-categories and complete Segal spaces as defined by Joyal-Tierney and the straightening construction due to Lurie.
We show that the category of positive opetopes with contraction morphisms, i.e. all face maps and some degeneracies, forms a test category. The category of positive opetopic sets pOpeSet can be defined as a full subcategory of the category of polyg
raphs Poly. An object of pOpeSet has generators whose codomains are again generators and whose domains are non-identity cells (i.e. non-empty composition of generators). The category pOpeSet is a presheaf category with the exponent being called the category of positive opetopes pOpe. Objects of pOpe are called positive opetopes and morphisms are face maps only. Since Poly has a full-on-isomorphisms embedding into the category of omega-categories oCat, we can think of morphisms in pOpe as omega-functors that send generators to generators. The category of positive opetopes with contractions pOpe_iota has the same objects and face maps pOpe, but in addition it has some degeneracy maps. A morphism in pOpe_iota is an omega-functor that sends generators to either generators or to identities on generators. We show that the category pOpe_iota is a test category.
Let $mathcal{C}$ be a finitely bicomplete category and $mathcal{W}$ a subcategory. We prove that the existence of a model structure on $mathcal{C}$ with $mathcal{W}$ as subcategory of weak equivalence is not first order expressible. Along the way we
characterize all model structures where $mathcal{C}$ is a partial order and show that these are determined by the homotopy categories.
We first show that in the function realizability topos every metric space is separable, and every object with decidable equality is countable. More generally, working with synthetic topology, every $T_0$-space is separable and every discrete space is
countable. It follows that intuitionistic logic does not show the existence of a non-separable metric space, or an uncountable set with decidable equality, even if we assume principles that are validated by function realizability, such as Dependent and Function choice, Markovs principle, and Brouwers continuity and fan principles.