ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-epoch Low Radio Frequency Surveys of the Kepler K2 Mission Campaign Fields 3, 4, and 5 with the Murchison Widefield Array

48   0   0.0 ( 0 )
 نشر من قبل Steven Tingay
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Murchison Widefield Array (MWA) monitoring of the Kepler K2 mission Fields 3, 4, and 5 at frequencies of 155 and 186 MHz, from observations contemporaneous with the K2 observations. This work follows from previous MWA and GMRT surveys of Field 1, with the current work benefiting from a range of improvements in the data processing and analysis. We continue to build a body of systematic low frequency blind surveys overlapping with transient/variable survey fields at other wavelengths, providing multi-wavelength data for object classes such as flare stars. From the current work, we detect no variable objects at a surface density above 2e-4 per square degree, at flux densities of ~500 mJy, and observation cadence of days to weeks, representing almost an order of magnitude decrease in measured upper limits compared to previous results in this part of observational parameter space. This continues to show that radio transients at metre and centimetre wavelengths are rare.

قيم البحث

اقرأ أيضاً

We present the first dedicated radio continuum survey of a Kepler K2 mission field, Field 1 covering the North Galactic Cap. The survey is wide field, contemporaneous, multi-epoch, and multi-resolution in nature and was conducted at low radio frequen cies between 140 and 200 MHz. The multi-epoch and ultra wide field (but relatively low resolution) part of the survey was provided by 15 nights of observation with the Murchison Widefield Array (MWA) over a period of approximately a month, contemporaneous with K2 observations of the field. The multi-resolution aspect of the survey was provided by the low resolution (4) MWA imaging, complemented by non-contemporaneous but much higher resolution (20) observations using the Giant Metrewave Radio Telescope (GMRT). The survey is therefore sensitive to the details of radio structures across a wide range of angular scales. Consistent with other recent low radio frequency surveys, no significant radio transients or variables were detected in the survey. The resulting source catalogs consist of 1,085 and 1,468 detections in the two MWA observation bands (centered at 154 and 185 MHz, respectively) and 7,445 detections in the GMRT observation band (centered at 148 MHz), over 314 square degrees. The survey is presented as a significant resource for multi-wavelength investigations of the more than 21,000 target objects in the K2 field. We briefly examine our survey data against K2 target lists for dwarf star types (stellar types M and L) that have been known to produce radio flares.
We present low-frequency spectral energy distributions of 60 known radio pulsars observed with the Murchison Widefield Array (MWA) telescope. We searched the GaLactic and Extragalactic All-sky MWA (GLEAM) survey images for 200-MHz continuum radio emi ssion at the position of all pulsars in the ATNF pulsar catalogue. For the 60 confirmed detections we have measured flux densities in 20 x 8 MHz bands between 72 and 231 MHz. We compare our results to existing measurements and show that the MWA flux densities are in good agreement.
The Murchison Widefield Array is a low frequency (80 - 300 MHz) SKA Precursor, comprising 128 aperture array elements (known as tiles) distributed over an area of 3 km diameter. The MWA is located at the extraordinarily radio quiet Murchison Radioast ronomy Observatory in the mid-west of Western Australia, the selected home for the Phase 1 and Phase 2 SKA low frequency arrays. The MWA science goals include: 1) detection of fluctuations in the brightness temperature of the diffuse redshifted 21 cm line of neutral hydrogen from the epoch of reionisation; 2) studies of Galactic and extragalactic processes based on deep, confusion-limited surveys of the full sky visible to the array; 3) time domain astrophysics through exploration of the variable radio sky; and 4) solar imaging and characterisation of the heliosphere and ionosphere via propagation effects on background radio source emission. This paper concentrates on the capabilities of the MWA for solar science and summarises some of the solar science results to date, in advance of the initial operation of the final instrument in 2013.
A new generation of low frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the Epoch of Reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of widefield low frequency radio interferometry. Precise calibration will be required to separate the small expected EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognised Frequency Modulated (FM) radio band. The observations have implications for future low frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at metre wavelengths to an observer beyond our own solar system.
We present the results of a survey for low frequency radio emission from 17 known exoplanetary systems with the Murchison Widefield Array. This sample includes 13 systems that have not previously been targeted with radio observations. We detected no radio emission at 154 MHz, and put 3 sigma upper limits in the range 15.2-112.5 mJy on this emission. We also searched for circularly polarised emission and made no detections, obtaining 3 sigma upper limits in the range 3.4-49.9 mJy. These are comparable with the best low frequency radio limits in the existing literature and translate to luminosity limits of between 1.2 x 10^14 W and 1.4 x 10^17 W if the emission is assumed to be 100% circularly polarised. These are the first results from a larger program to systematically search for exoplanetary emission with the MWA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا