ﻻ يوجد ملخص باللغة العربية
With current and upcoming experiments such as WFIRST, Euclid and LSST, we can observe up to billions of galaxies. While such surveys cannot obtain spectra for all observed galaxies, they produce galaxy magnitudes in color filters. This data set behaves like a high-dimensional nonlinear surface, an excellent target for machine learning. In this work, we use a lightcone of semianalytic galaxies tuned to match CANDELS observations from Lu et al. (2014) to train a set of neural networks on a set of galaxy physical properties. We add realistic photometric noise and use trained neural networks to predict stellar masses and average star formation rates on real CANDELS galaxies, comparing our predictions to SED fitting results. On semianalytic galaxies, we are nearly competitive with template-fitting methods, with biases of $0.01$ dex for stellar mass, $0.09$ dex for star formation rate, and $0.04$ dex for metallicity. For the observed CANDELS data, our results are consistent with template fits on the same data at $0.15$ dex bias in $M_{rm star}$ and $0.61$ dex bias in star formation rate. Some of the bias is driven by SED-fitting limitations, rather than limitations on the training set, and some is intrinsic to the neural network method. Further errors are likely caused by differences in noise properties between the semianalytic catalogs and data. Our results show that galaxy physical properties can in principle be measured with neural networks at a competitive degree of accuracy and precision to template-fitting methods.
The objective of this work was to assess the clinical performance of an unsupervised machine learning model aimed at identifying unusual medication orders and pharmacological profiles. We conducted a prospective study between April 2020 and August 20
We measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. We evaluate three neutrino interaction models based on the widely use
We demonstrate that highly accurate joint redshift-stellar mass probability distribution functions (PDFs) can be obtained using the Random Forest (RF) machine learning (ML) algorithm, even with few photometric bands available. As an example, we use t
Wu & Peek (2020) predict SDSS-quality spectra based on Pan-STARRS broad-band textit{grizy} images using machine learning (ML). In this letter, we test their prediction for a unique object, UGC 2885 (Rubins galaxy), the largest and most massive, isola
We explore unsupervised machine learning for galaxy morphology analyses using a combination of feature extraction with a vector-quantised variational autoencoder (VQ-VAE) and hierarchical clustering (HC). We propose a new methodology that includes: (