ﻻ يوجد ملخص باللغة العربية
Second-order topological superconductors host Majorana corner and hingemodes in contrast to conventional edge and surface modes in two and three dimensions. However, the realization of such second-order corner modes usually demands unconventional superconducting pairing or complicated junctions or layered structures. Here we show that Majorana corner modes could be realized using a 2D quantum spin Hall insulator in proximity contact with an $s$-wave superconductor and subject to an in-plane Zeeman field. Beyond a critical value, the in-plane Zeeman field induces opposite effective Dirac masses between adjacent boundaries, leading to one Majorana mode at each corner. A similar paradigm also applies to 3D topological insulators with the emergence of Majorana hinge states. Avoiding complex superconductor pairing and material structure, our scheme provides an experimentally realistic platform for implementing Majorana corner and hinge states.
SnTe materials are one of the most flexible material platforms for exploring the interplay of topology and different types of symmetry breaking. We study symmetry-protected topological states in SnTe nanowires in the presence of various combinations
We identify three-dimensional higher-order superconductors characterized by the coexistence of one-dimensional Majorana hinge states and gapless surface sates. We show how such superconductors can be obtained starting from the model of a spinful quad
We propose a realization of chiral Majorana modes propagating on the hinges of a 3D antiferromagnetic topological insulator, which was recently theoretically predicted and experimentally confirmed in the tetradymite-type $mathrm{MnBi_2Te_4}$-related
Exotic states of topological materials are challenging or impossible to create under ambient conditions.1-4 Moreover, it is unclear whether topological superconductivity, as a critical element for topological quantum computing, exists in any naturall
Contrary to the widespread belief that Majorana zero-energy modes, existing as bound edge states in 2D topological insulator (TI)-superconductor (SC) hybrid structures, are unaffected by non-magnetic static disorder by virtue of Andersons theorem, we