ﻻ يوجد ملخص باللغة العربية
Galaxies and galaxy groups located along the line of sight towards gravitationally lensed quasars produce high-order perturbations of the gravitational potential at the lens position. When these perturbation are too large, they can induce a systematic error on $H_0$ of a few-percent if the lens system is used for cosmological inference and the perturbers are not explicitly accounted for in the lens model. In this work, we present a detailed characterization of the environment of the lens system WFI2033-4723 ($z_{rm src} = 1.662$, $z_{rm lens}$ = 0.6575), one of the core targets of the H0LICOW project for which we present cosmological inferences in a companion paper (Rusu et al. 2019). We use the Gemini and ESO-Very Large telescopes to measure the spectroscopic redshifts of the brightest galaxies towards the lens, and use the ESO-MUSE integral field spectrograph to measure the velocity-dispersion of the lens ($sigma_{rm {los}}= 250^{+15}_{-21}$ km/s) and of several nearby galaxies. In addition, we measure photometric redshifts and stellar masses of all galaxies down to $i < 23$ mag, mainly based on Dark Energy Survey imaging (DR1). Our new catalog, complemented with literature data, more than doubles the number of known galaxy spectroscopic redshifts in the direct vicinity of the lens, expanding to 116 (64) the number of spectroscopic redshifts for galaxies separated by less than 3 arcmin (2 arcmin) from the lens. Using the flexion-shift as a measure of the amplitude of the gravitational perturbation, we identify 2 galaxy groups and 3 galaxies that require specific attention in the lens models. The ESO MUSE data enable us to measure the velocity-dispersions of three of these galaxies. These results are essential for the cosmological inference analysis presented in Rusu et al. (2019).
Galaxies located in the environment or on the line of sight towards gravitational lenses can significantly affect lensing observables, and can lead to systematic errors on the measurement of $H_0$ from the time-delay technique. We present the results
We present the lens mass model of the quadruply-imaged gravitationally lensed quasar WFI2033-4723, and perform a blind cosmographical analysis based on this system. Our analysis combines (1) time-delay measurements from 14 years of data obtained by t
We present a list of galaxy-scale lens candidates including a highly probable interacting galaxy-scale lens in the Hyper Suprime-Cam (HSC) imaging survey. We combine HSC imaging with the blended-spectra catalog from the Galaxy And Mass Assembly (GAMA
Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitud
With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately-sampled fields. Using a group finding algorithm, we find 210 groups with at least five member