ترغب بنشر مسار تعليمي؟ اضغط هنا

First grids of low-mass stellar models and isochrones with self-consistent treatment of rotation : From 0.2 to 1.5 M_odot at 7 metallicities from PMS to TAMS

49   0   0.0 ( 0 )
 نشر من قبل Louis Amard
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an extended grid of state-of-the art stellar models for low-mass stars including updated physics (nuclear reaction rates, surface boundary condition, mass-loss rate, angular momentum transport, torque and rotation-induced mixing prescriptions). We aim at evaluating the impact of wind braking, realistic atmospheric treatment, rotation and rotation-induced mixing on the structural and rotational evolution from the pre-main sequence to the turn-off. Using the STAREVOL code, we provide an updated PMS grid. We compute stellar models for 7 different metallicities, from [Fe/H] = -1 dex to [Fe/H] = +0.3 dex with a solar composition corresponding to $Z=0.0134$. The initial stellar mass ranges from 0.2 to 1.5Ms with extra grid refinement around one solar mass. We also provide rotating models for three different initial rotation rates (slow, median and fast) with prescriptions for the wind braking and disc-coupling timescale calibrated on observed properties of young open clusters. The rotational mixing includes an up-to-date description of the turbulence anisotropy in stably stratified regions. The overall behaviour of our models at solar metallicity -- and its constitutive physics -- is validated through a detailed comparison with a variety of distributed evolutionary tracks. The main differences arise from the choice of surface boundary conditions and initial solar composition. The models including rotation with our prescription for angular momentum extraction and self-consistent formalism for angular momentum transport are able to reproduce the rotation period distribution observed in young open clusters over a broad mass-range. These models are publicly available and may be used to analyse data coming from present and forthcoming asteroseismic and spectroscopic surveys such as Gaia, TESS and PLATO.



قيم البحث

اقرأ أيضاً

Understanding the nature of the first stars is key to understanding the early universe. With new facilities such as JWST we may soon have the first observations of the earliest stellar populations, but to understand these observations we require deta iled theoretical models. Here we compute a grid of stellar evolution models using the Geneva code with the aim to improve our understanding of the evolution of zero-metallicity stars, with particular interest in how rotation affects surface properties, interior structure, and metal enrichment. We produce a range of models of initial masses (Mini) from 1.7 Msun to 120 Msun, focusing on massive models of 9 Msun < Mini < 120 Msun. Our grid includes models with and without rotation, with rotating models having an initial velocity of 40% of the critical velocity. We find that rotation strongly impacts the evolution of the first stars, mainly through increased core size and stronger H-burning shells during core He-burning. Without radiative mass loss, angular momentum builds at the surface in rotating models, thus models of initial masses Mini > 60 Msun reach critical rotation on the main sequence and experience mass loss. We find that rotational mixing strongly affects metal enrichment, but does not always increase metal production as we see at higher metallicities. This is because rotation leads to an earlier CNO boost to the H shell during He-burning, which may hinder metal enrichment depending on initial mass and rotational velocity. Electronic tables of this new grid of Population III models are publicly available.
The effects of rotation on stellar evolution are particularly important at low metallicity, when mass loss by stellar winds diminishes and the surface enrichment due to rotational mixing becomes relatively more pronounced than at high metallicities. Here we investigate the impact of rotation and metallicity on stellar evolution. Using a similar physics as in our previous large grids of models at Z=0.002 and Z=0.014, we compute stellar evolution models with the Geneva code for rotating and nonrotating stars with initial masses (Mini) between 1.7 and 120 Msun and Z=0.0004 (1/35 solar). This is comparable to the metallicities of the most metal poor galaxies observed so far, such as I Zw 18. Concerning massive stars, both rotating and nonrotating models spend most of their core-helium burning phase with an effective temperature higher than 8000 K. Stars become red supergiants only at the end of their lifetimes, and few RSGs are expected. Our models predict very few to no classical Wolf-Rayet stars as a results of weak stellar winds at low metallicity. The most massive stars end their lifetimes as luminous blue supergiants or luminous blue variables, a feature that is not predicted by models with higher metallicities. Interestingly, due to the behavior of the intermediate convective zone, the mass domain of stars producing pair-instability supernovae is smaller at Z=0.0004 than at Z=0.002. We find that during the main sequence phase, the ratio between nitrogen and carbon abundances (N/C) remains unchanged for nonrotating models. However, N/C increases by factors of 10-20 in rotating models at the end of the MS. Cepheids coming from stars with Mini > 4-6 Msun are beyond the core helium burning phase and spend little time in the instability strip. Since they would evolve towards cooler effective temperatures, these Cepheids should show an increase of the pulsation period as a function of age.
46 - R. Bollig 2020
To date, modern three-dimensional (3D) supernova (SN) simulations have not demonstrated that explosion energies of 10^{51} erg (=1 bethe = 1B) or more are possible for neutrino-driven SNe of non/slow-rotating M < 20 solar-mass progenitors. We present the first such model, considering a non-rotating, solar-metallicity 18.88 solar-mass progenitor, whose final 7 minutes of convective oxygen-shell burning were simulated in 3D and showed a violent oxygen-neon shell merger prior to collapse. A large set of 3D SN-models was computed with the Prometheus-Vertex code, whose improved convergence of the two-moment equations with Boltzmann closure allows now to fully exploit the implicit neutrino-transport treatment. Nuclear burning is treated with a 23-species network. We vary the angular grid resolution and consider different nuclear equations of state and muon formation in the proto-neutron star (PNS), which requires six-species transport with coupling of all neutrino flavors across all energy-momentum groups. Elaborate neutrino transport was applied until ~2 seconds after bounce. In one case the simulation was continued to >7 seconds with an approximate treatment of neutrino effects that allows for seamless continuation without transients. A spherically symmetric neutrino-driven wind does not develop. Instead, accretion downflows to the PNS and outflows of neutrino-heated matter establish a monotonic rise of the explosion energy until ~7 seconds post bounce, when the outgoing shock reaches about 50,000 km and enters the He-layer. The converged value of the explosion energy at infinity (with overburden subtracted) is roughly 1B and the ejected 56Ni mass up to 0.087 solar masses, both within a few 10 percent of the SN 1987A values. The final NS mass and kick are about 1.65 solar masses and over 450 km/s, respectively.
We present a dense grid of evolutionary tracks and isochrones of rotating massive main-sequence stars. We provide three grids with different initial compositions tailored to compare with early OB stars in the Small and Large Magellanic Clouds and in the Galaxy. Each grid covers masses ranging from 5 to 60 Msun and initial rotation rates between 0 and about 600 km/s. To calibrate our models we used the results of the VLT-FLAMES Survey of Massive Stars. We determine the amount of convective overshooting by using the observed drop in rotation rates for stars with surface gravities log g < 3.2 to determine the width of the main sequence. We calibrate the efficiency of rotationally induced mixing using the nitrogen abundance determinations for B stars in the Large Magellanic cloud. We describe and provide evolutionary tracks and the evolution of the central and surface abundances. In particular, we discuss the occurrence of quasi-chemically homogeneous evolution, i.e. the severe effects of efficient mixing of the stellar interior found for the most massive fast rotators. We provide a detailed set of isochrones for rotating stars. Rotation as an initial parameter leads to a degeneracy between the age and the mass of massive main sequence stars if determined from its observed location in the Hertzsprung-Russell diagram. We show that the consideration of surface abundances can resolve this degeneracy.
We derive stellar masses from SED fitting to rest-frame optical and UV fluxes for 401 star-forming galaxies at z 4, 5, and 6 from Hubble-WFC3/IR observations of the ERS combined with the deep GOODS-S Spitzer/IRAC data (and include a previously-publis hed z 7 sample). A mass-luminosity relation with strongly luminosity-dependent M/Luv ratios is found for the largest sample (299 galaxies) at z 4. The relation M propto L_{UV,1500}^(1.7+/-0.2) has a well-determined intrinsic sample variance of 0.5 dex. This relation is also consistent with the more limited samples at z 5-7. This z 4 mass-luminosity relation, and the well-established faint UV luminosity functions at z 4-7, are used to derive galaxy mass functions (MF) to masses M~10^8 at z 4-7. A bootstap approach is used to derive the MFs to account for the large scatter in the M--Luv relation and the luminosity function uncertainties, along with an analytical crosscheck. The MFs are also corrected for the effects of incompleteness. The incompleteness-corrected MFs are steeper than previously found, with slopes alpha_M-1.4 to -1.6 at low masses. These slopes are, however, still substantially flatter than the MFs obtained from recent hydrodynamical simulations. We use these MFs to estimate the stellar mass density (SMD) of the universe to a fixed M_{UV,AB}<-18 as a function of redshift and find a SMD growth propto(1+z)^{-3.4 +/-0.8} from z 7 to z 4. We also derive the SMD from the completeness-corrected MFs to a mass limit M~10^{8} Msun. Such completeness-corrected MFs and the derived SMDs will be particularly important for model comparisons as future MFs reach to lower masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا