ترغب بنشر مسار تعليمي؟ اضغط هنا

The spiral pattern rotation speed of the Galaxy and the corotation radius with GAIA DR2

72   0   0.0 ( 0 )
 نشر من قبل Hektor Monteiro
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we revisit the issue of the rotation speed of the spiral arms and the location of the corotation radius of our Galaxy. This research was performed using homogeneous data set of young open clusters (age < 50 Myr) determined from Gaia DR2 data. The stellar astrometric membership were determined using proper motions and parallaxes, taking into account the full covariance matrix. The distance, age, reddening and metallicity of the clusters were determined by our non subjective multidimensional global optimization tool to fit theoretical isochrones to Gaia DR2 photometric data. The rotation speed of the arms is obtained from the relation between age and angular distance of the birthplace of the clusters to the present-day position of the arms. Using the clusters belonging to the Sagittarius-Carina, Local and Perseus arms, and adopting the Galactic parameters $R_0$ = 8.3 kpc and $V_0$ = 240 km,s$^{-1}$, we determine a pattern speed of $28.2 pm 2.1$ km,s$^{-1}$,kpc$^{-1}$, with no difference between the arms. This implies that the corotation radius is $R_c = 8.51 pm 0.64$ kpc, close to the solar Galactic orbit ($R_c/R_0 = 1.02pm0.07$).



قيم البحث

اقرأ أيضاً

We search for the fastest stars in the subset of stars with radial velocity measurements of the second data release (DR2) of the European Space Agency mission Gaia. Starting from the observed positions, parallaxes, proper motions, and radial velociti es, we construct the distance and total velocity distribution of more than $7$ million stars in our Milky Way, deriving the full 6D phase space information in Galactocentric coordinates. These information are shared in a catalogue, publicly available at http://home.strw.leidenuniv.nl/~marchetti/research.html. To search for unbound stars, we then focus on stars with a probability greater than $50 %$ of being unbound from the Milky Way. This cut results in a clean sample of $125$ sources with reliable astrometric parameters and radial velocities. Of these, $20$ stars have probabilities greater than 80 $%$ of being unbound from the Galaxy. On this latter sub-sample, we perform orbit integration to characterize the stars orbital parameter distributions. As expected given the relatively small sample size of bright stars, we find no hypervelocity star candidates, stars that are moving on orbits consistent with coming from the Galactic Centre. Instead, we find $7$ hyper-runaway star candidates, coming from the Galactic disk. Surprisingly, the remaining $13$ unbound stars cannot be traced back to the Galaxy, including two of the fastest stars (around $700$ km/s). If conformed, these may constitute the tip of the iceberg of a large extragalactic population or the extreme velocity tail of stellar streams.
We propose a new method for determination of the rotation velocity of the galactic spiral density waves, correspondingly, the corotation radius, $r_C$, in our Galaxy by means of statistical analysis of radial oxygen distribution in the galactic disc derived over Cepheids. The corotation resonance happens to be located at $r_C sim 7.0 - 7.6 $ kpc, depending on the rate of gas infall on to the galactic disc, the statistical error being $sim 0.3 - 0.4$ kpc. Simultaneously, the constant for the rate of oxygen synthesis in the galactic disc was determined. We also argue in favour of a very short time-scale formation of the galactic disc, namely: $t_f sim 2$ Gyr. This scenario enables to solve the problem of the lack of intergalactic gas infall.
We measure the escape speed curve of the Milky Way based on the analysis of the velocity distribution of $sim 2850$ counter-rotating halo stars from the Gaia DR2. The distances were estimated through the StarHorse code, and only stars with distance e rrors smaller than 10 per cent were used in the study. The escape speed curve is measured at Galactocentric radii ranging from $sim 5$ kpc to $sim 10.5$ kpc. The local Galactic escape at the Suns position is estimated to be $v_mathrm{e}(r_odot)=580 pm 63~mathrm{km~s^{-1}}$, and it rises towards the Galactic center. Defined as the minimum speed required to reach three virial radii, our estimate of the escape speed as a function of radius implies, for a Navarro-Frenk-White profile and local circular velocity of $240~mathrm{km~s^{-1}}$, a dark matter mass $M_{200}=1.28^{+0.68}_{-0.50} times 10^{12}~M_odot$ and a high concentration $c_{200}=11.09^{+2.94}_{-1.79}$. Assuming the mass-concentration relation of $Lambda$CDM, we get $M_{200}=1.55_{-0.51}^{+0.64}times 10^{12}~M_odot$, $c_{200}=7.93_{-0.27}^{+0.33}$, for a local circular velocity of $228~mathrm{km~s^{-1}}$.
We use photometric and kinematic data from Gaia DR2 to explore the structure of the star forming region associated with the molecular cloud of Perseus. Apart from the two well known clusters, IC 348 and NGC 1333, we present five new clustered groups of young stars, which contain between 30 and 300 members, named Autochthe, Alcaeus, Heleus, Electryon and Mestor. We demonstrate these are co-moving groups of young stars, based on how the candidate members are distributed in position, proper motion, parallax and colour-magnitude space. By comparing their colour-magnitude diagrams to isochrones we show that they have ages between 1 and 5 Myr. Using 2MASS and WISE colours we find that the fraction of stars with discs in each group ranges from 10 to 50 percent. The youngest of the new groups is also associated with a reservoir of cold dust, according to the Planck map at 353 GHz. We compare the ages and proper motions of the five new groups to those of IC 348 and NGC 1333. Autochthe is clearly linked with NGC 1333 and may have formed in the same star formation event. The seven groups separate roughly into two sets which share proper motion, parallax and age: Heleus, Electryon, Mestor as the older set, and NGC 1333, Autochthe as the younger set. Alcaeus is kinematically related to the younger set, but at a more advanced age, while the properties of IC 348 overlap with both sets. All older groups in this star forming region are located at higher galactic latitude.
Line-of-sight kinematic studies indicate that many Galactic globular clusters have a significant degree of internal rotation. However, three-dimensional kinematics from a combination of proper motions and line-of-sight velocities are needed to unveil the role of angular momentum in the formation and evolution of these old stellar systems. Here we present the first quantitative study of internal rotation on the plane-of-the-sky for a large sample of globular clusters using proper motions from Gaia DR2. We detect signatures of rotation in the tangential component of proper motions for 11 out of 51 clusters at a $>$3-sigma confidence level, confirming the detection reported in Gaia collaboration et al. (2018) for 8 clusters, and additionally identify 11 GCs with a 2-sigma rotation detection. For the clusters with a detected global rotation, we construct the two-dimensional rotation maps and proper motion rotation curves, and we assess the relevance of rotation with respect to random motions ($V/sigmasim0.08-0.51$). We find evidence of a correlation between the degree of internal rotation and relaxation time, highlighting the importance of long-term dynamical evolution in shaping the clusters current properties. This is a strong indication that angular momentum must have played a fundamental role in the earliest phases of cluster formation. Finally, exploiting the spatial information of the rotation maps and a comparison with line-of-sight data, we provide an estimate of the inclination of the rotation axis for a subset of 8 clusters. Our work demonstrates the potential of Gaia data for internal kinematic studies of globular clusters and provides the first step to reconstruct their intrinsic three-dimensional structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا