ﻻ يوجد ملخص باللغة العربية
Although knowing the occurrence frequency of severe space weather events is important for a modern society, it is insufficiently known due to the lack of magnetic or sunspot observations, before the Carrington event in 1859 known as one of the largest events during the last two centuries. Here, we show that a severe magnetic storm occurred on 8 March 1582 based on auroral records in East Asia. The equatorward boundary of auroral visibility reached 28.8{deg} magnetic latitude. The equatorward boundary of the auroral oval is estimated to be 33.0{deg} invariant latitude (ILAT), which is comparable to the storms on 25/26 September 1909 (~31.6{deg} ILAT, minimum Dst of -595 nT), 28/29 August 1859 (~36.5{deg} ILAT), and 13/14 March 1989 (~40{deg} ILAT, minimum Dst of -589 nT). Assuming that the equatorward boundary is a proxy for the scale of magnetic storms, we presume that the storm on March 1582 was severe. We also found that the storm on March 1582 lasted, at least, for three days by combining European records. The auroral oval stayed at mid-latitude for the first two days and moved to low-latitude (in East Asia) for the last day. It is plausible that the storm was caused by a series of ICMEs (interplanetary coronal mass ejections). We can reasonably speculate that a first ICME could have cleaned up interplanetary space to make the following ICMEs more geo-effective, as probably occurred in the Carrington and Halloween storms.
Newly discovered descriptions about the great aurora observed in March 1582 are presented in this work. These records were made by Portuguese observers from Lisbon. Both records described the aurora like a great fire in the northern part of the sky.
The Carrington event is considered to be one of the most extreme space weather events in observational history within a series of magnetic storms caused by extreme interplanetary coronal mass ejections (ICMEs) from a large and complex active region (
A small percentage of normal stars harbor giant planets that orbit within a few tenths of an astronomical unit. At such distances the potential exists for significant tidal and magnetic field interaction resulting in energy dissipation that may manif
We present an investigation of the polar crown prominence that erupted on 2012 March 12. This prominence is observed at the southeast limb by SDO/AIA (end-on view) and displays a quasi vertical-thread structure. Bright U-shape/horn-like structure is
Turbulent convection efficiently transports energy up to the solar photosphere, but its multi-scale nature and dynamic properties are still not fully understood. Several works in the literature have investigated the emergence of patterns of convectiv