ﻻ يوجد ملخص باللغة العربية
The electronic nematic phase is an unconventional state of matter that spontaneously breaks the rotational symmetry of electrons. In iron-pnictides/chalcogenides and cuprates, the nematic ordering and fluctuations have been suggested to have as-yet-unconfirmed roles in superconductivity. However, most studies have been conducted in thermal equilibrium, where the dynamical property and excitation can be masked by the coupling with the lattice. Here we use femtosecond optical pulse to perturb the electronic nematic order in FeSe. Through time-, energy-, momentum- and orbital-resolved photo-emission spectroscopy, we detect the ultrafast dynamics of electronic nematicity. In the strong-excitation regime, through the observation of Fermi surface anisotropy, we find a quick disappearance of the nematicity followed by a heavily-damped oscillation. This short-life nematicity oscillation is seemingly related to the imbalance of Fe 3dxz and dyz orbitals. These phenomena show critical behavior as a function of pump fluence. Our real-time observations reveal the nature of the electronic nematic excitation instantly decoupled from the underlying lattice.
The importance of the spin-orbit coupling (SOC) effect in Fe-based superconductors (FeSCs) has recently been under hot debate. Considering the Hunds coupling-induced electronic correlation, the understanding of the role of SOC in FeSCs is not trivial
In the mixed-valence manganites, a near-infrared laser typically melts the orbital and spin order simultaneously, corresponding to the photoinduced $d^{1}d^{0}$ $xrightarrow{}$ $d^{0}d^{1}$ excitations in the Mott-Hubbard bands of manganese. Here, we
FeSe$_{x}$Te$_{1-x}$ compounds present a complex phase diagram, ranging from the nematicity of FeSe to the $(pi, pi)$ magnetism of FeTe. We focus on FeSe$_{0.4}$Te$_{0.6}$, where the nematic ordering is absent at equilibrium. We use a time-resolved a
Raman experiments on bulk FeSe revealed that the low-frequency part of $B_{1g}$ Raman response $R_{B_{1g}}$, which probes nematic fluctuations, rapidly decreases below the nematic transition at $T_n sim 85$K. Such behavior is usually associated with
The origin of the electronic nematicity in FeSe, which occurs below a tetragonal-to-orthorhombic structural transition temperature $T_s$ ~ 90 K, well above the superconducting transition temperature $T_c = 9$ K, is one of the most important unresolve