ترغب بنشر مسار تعليمي؟ اضغط هنا

Relating the curvature of De Sitter Universe to Open Quantum Lamb Shift Spectroscopy

116   0   0.0 ( 0 )
 نشر من قبل Sayantan Choudhury
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we explore the connection between the curvature of the background De Sitter space-time with the spectroscopic study of entanglement of two atoms. Our set up is in the context of an Open Quantum System (OQS), where the two atoms, each having two energy levels and represented by Pauli spin tensor operators projected along any arbitrary direction. The system mimics the role of a pair of freely falling Unruh De-Witt detectors, which are allowed to non-adiabatically interact with a conformally coupled massless probe scalar field which has the role of background thermal bath. The effective dynamics of this combined system takes into account of the non-adiabatic interaction, which is commonly known as the Resonant Casimir Polder Interaction (RCPI) with the thermal bath. Our analysis reveals that the RCPI of two stable entangled atoms in the quantum vacuum states in OQS depends on the de Sitter space-time curvature relevant to the temperature of the thermal bath felt by the static observer. We also find that, in OQS, RCPI produces a new significant contribution appearing in the effective Hamiltonian of the total system and thermal bath under consideration. We find that the Lamb Shift is characterized by a decreasing inverse square power-law behavior, $L^{-2}$, when inter atomic Euclidean distance, $L$, is much larger than a characteristic length scale, $k$, which is the inverse surface gravity of the background De Sitter space. If the background space-time would have been Minkowskian this shift decreases as, $L^{-1}$, and is independent of temperature. Thus, we establish a connection between the curvature of the De Sitter space-time with the Lamb Shift spectroscopy.



قيم البحث

اقرأ أيضاً

We study the vacuum radiative corrections to energy levels of a confined electron in quantum rings. The calculations are provided for the Lamb shift of energy levels in low-momentum region of virtual photons and for both one-dimensional and two-dimen sional quantum rings. We show that contrary to the well known case of a hydrogen atom the value of the Lamb shift increases with the magnetic momentum quantum number m. We also investigate the dependence of the Lamb shift on magnetic flux piercing the ring and demonstrate a presence of magnetic-flux-dependent oscillations. For one-dimensional ring the value of the shift strongly depends on the radius of the ring. It is extremely small for semiconductor rings but can attain measurable quantities in natural organic ring-shape molecules, such as benzene, cycloalcanes and porphyrins.
126 - M. V. Takook 2017
We give in this paper an explicit construction of the covariant quantization of the rank-two massless tensor field on de Sitter space (linear covariant quantum gravity on a de Sitter background). The main ingredient of the construction is an indecomp osable representation of de Sitter group. We here make the choice of a specific simple gauge fixing. We show that our gauge fixing eliminates any infrared divergence in the two-point function for the traceless part of this field. But it is not possible to do the same for the pure trace part (conformal sector). We describe the related Krein space structure and covariant field operators. This work is in the continuation of our previous ones concerning the massless minimally coupled scalar fields and the massive tensor field on de Sitter.
We construct a class of extended shift symmetries for fields of all integer spins in de Sitter (dS) and anti-de Sitter (AdS) space. These generalize the shift symmetry, galileon symmetry, and special galileon symmetry of massless scalars in flat spac e to all symmetric tensor fields in (A)dS space. These symmetries are parametrized by generalized Killing tensors and exist for fields with particular discrete masses corresponding to the longitudinal modes of massive fields in partially massless limits. We construct interactions for scalars that preserve these shift symmetries, including an extension of the special galileon to (A)dS space, and discuss possible generalizations to interacting massive higher-spin particles.
50 - T. Garidi , E. Huguet , J. Renaud 2003
We show that a particular set of global modes for the massive de Sitter scalar field (the de Sitter waves) allows to manage the group representations and the Fourier transform in the flat (Minkowskian) limit. This is in opposition to the usual accept ance based on a previous result, suggesting the appearance of negative energy in the limit process. This method also confirms that the Euclidean vacuum, in de Sitter spacetime, has to be preferred as far as one wishes to recover ordinary QFT in the flat limit.
Hybrid quantum systems consisting of an ensemble of two--level systems interacting with a single--mode electromagnetic field are important for the development of quantum information processors and other quantum devices. These systems are characterize d by the set of energy level hybridizations, split by collective Lamb shifts, that occur when the ensemble and field mode interact coherently with high cooperativity. Computing the full set of Lamb shifts is generally intractable given the high dimensionality of many devices. In this work, we present a set of techniques that allow a compact description of the Lamb shift statistics across all collective angular momentum subspaces of the ensemble without using restrictive approximations on the state space. We use these techniques to both analyze the Lamb shift in all subspaces and excitation manifolds and to describe the average observed Lamb shift weighted over the degeneracies of all subspaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا