ترغب بنشر مسار تعليمي؟ اضغط هنا

On generalized median triangles and tracing orbits

99   0   0.0 ( 0 )
 نشر من قبل Hiroaki Nakamura
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study generalization of median triangles on the plane with two complex parameters. By specialization of the parameters, we produce periodical motion of a triangle whose vertices trace each other on a common closed orbit.



قيم البحث

اقرأ أيضاً

Given a convex disk $K$ and a positive integer $k$, let $vartheta_T^k(K)$ and $vartheta_L^k(K)$ denote the $k$-fold translative covering density and the $k$-fold lattice covering density of $K$, respectively. Let $T$ be a triangle. In a very recent p aper, K. Sriamorn proved that $vartheta_L^k(T)=frac{2k+1}{2}$. In this paper, we will show that $vartheta_T^k(T)=vartheta_L^k(T)$.
Given a plane triangle $Delta$, one can construct a new triangle $Delta$ whose vertices are intersections of two cevian triples of $Delta$. We extend the family of operators $DeltamapstoDelta$ by complexifying the defining two cevian parameters and s tudy its rich structure from arithmetic-geometric viewpoints. We also find another useful parametrization of the operator family via finite Fourier analysis and apply it to investigate area-preserving operators on triangles.
192 - Thomas Haettel 2014
We show that symmetric spaces and thick affine buildings which are not of spherical type $A_1^r$ have no coarse median in the sense of Bowditch. As a consequence, they are not quasi-isometric to a CAT(0) cube complex, answering a question of Haglund. Another consequence is that any lattice in a simple higher rank group over a local field is not coarse median.
We analyze loci of triangles centers over variants of two-well known triangle porisms: the bicentric family and the confocal family. Specifically, we evoke a more general version of Poncelets closure theorem whereby individual sides can be made tange nt to separate caustics. We show that despite a more complicated dynamic geometry, the locus of certain triangle centers and associated points remain conics and/or circles.
We prove that for every $N e 4$ there is only one right triangle that tiles the regular $N$-gon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا