ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of color on rapidity gap survival

111   0   0.0 ( 0 )
 نشر من قبل Zolt\\'an Nagy
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the probability for no jets with transverse momenta above a given cut to be found in the rapidity region between two high pT jets with a large rapidity separation. Our investigation uses the parton shower event generator DEDUCTOR with color beyond the leading-color-plus approximation included perturbatively.



قيم البحث

اقرأ أيضاً

116 - L. Frankfurt 2007
We summarize how the approach to the black--disk regime (BDR) of strong interactions at TeV energies influences rapidity gap survival in exclusive hard diffraction pp--> p + H + p (H =dijet, bar Q Q, Higgs). Employing a recently developed partonic de scription of such processes, we discuss (a) the suppression of diffraction at small impact parameters by soft spectator interactions in the BDR; (b) further suppression by inelastic interactions of hard spectator partons in the BDR; (c) effects of correlations between hard and soft interactions, as suggested by various models of proton structure (color fluctuations, spatial correlations of partons). Hard spectator interactions in the BDR substantially reduce the rapidity gap survival probability at LHC energies compared to previously reported estimates.
We discuss recent calculations of the survival probability of the large rapidity gaps in exclusive processes of the type pp --> p+A+p at high energies. Absorptive or screening effects are important, and one consequence is that the total cross section at the LHC is predicted to be only about 90 mb.
We propose a new approach to the problem of rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp -> p + (gap) + H + (gap) + p. It is based on the idea that hard and soft interactions proceed over widely different time- and distance scales and are thus approximately independent. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons. Its amplitude is calculable in terms of the gluon generalized parton distributions (GPDs) in the protons, which can be measured in J/psi production in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate in a model-independent way in terms of the pp elastic scattering amplitude. Contributions from inelastic intermediate states are suppressed. A simple geometric picture of the interplay of hard and soft interactions in diffraction is obtained. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton, or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons (diffraction pattern). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the LHC.
132 - T.K. Kuo , Taekoon Lee 1997
We show that the current bounds on the leptoquark couplings imply that if leptoquarks are produced in e p collisions, a significant fraction of them could form a leptoquark-quark bound state. The decay of the bound state has a distinct event shape wi th rapidity gap. A possible application of this observation in the leptoquark search at HERA is discussed.
We calculate the probability that the rapidity gaps in diffractive processes survive both eikonal and enhanced rescattering. We present arguments that enhanced rescattering, which violates soft-hard factorization, is not very strong. Accounting for N LO effects, there is no reason to expect that the black disc regime is reached at the LHC. We discuss the predictions for the survival of the rapidity gaps for exclusive Higgs production at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا