ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling the vortex glass phase in the surface and volume of a type-II superconductor

95   0   0.0 ( 0 )
 نشر من قبل Jazmin Aragon Sanchez
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Order-disorder transitions between glassy phases are quite common in nature and yet a comprehensive survey of the microscopic structural changes remains elusive since the scale of the constituents is tiny and in most cases few of them take part in the transformation. Vortex matter in type-II superconductors is a model system where some of the experimental challenges inherent to this general question can be tackled by adequately choosing the host superconducting sample. For instance, Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8 + delta}$ is a type-II superconductor with weak point disorder that presents a transition between two glassy phases on increasing the constituents (vortices) density. At low vortex densities, the impact of disorder produces the nucleation of a glassy yet quasi-crystalline phase, the Bragg glass. For high vortex densities the stable phase, coined as $textit{vortex glass}$, was proposed to be disordered, but its structural properties have remained elusive up to now. Here we answer this question by combining surface and bulk vortex imaging techniques, and show that the vortex glass is neither a messy nor a hexatic phase: in the plane of vortices it presents large crystallites with positional correlations growing algebraically and short-ranged orientational order. However, no dramatic change in the correlation length along the direction of vortices is observed on traversing the order-disorder transformation.



قيم البحث

اقرأ أيضاً

66 - U. Divakar , A.J. Drew , S.L. Lee 2006
The order of the vortex state in La_{1.9} Sr_{0.1} CuO_{4} is probed using muon spin rotation and small-angle neutron scattering. A transition from a Bragg glass to a vortex glass is observed, where the latter is composed of disordered vortex lines. In the vicinity of the transition the microscopic behavior reflects a delicate interplay of thermally-induced and pinning-induced disorder.
In a recent letter Klein et al. [Nature 413, 404 (2001); cond-mat/0110018] provide experimental evidence for the existence of the Bragg glass phase in impure type II superconductors. Here we show that a more complete consideration of recent theoretic al findings allows an even better interpretation of the experimental data.
125 - Qing-Hu Chen 2008
Dynamics of vortices in strongly type-II superconductors with strong disorder is investigated within the frustrated three-dimensional XY model. For two typical models in [Phys. Rev. Lett. {bf 91}, 077002 (2003)] and [Phys. Rev. B {bf 68}, 220502(R) ( 2003)], a strong evidence for the finite temperature vortex glass transition in the unscreened limit is provided by performing large-scale dynamical simulations. The obtained correlation length exponents and the dynamic exponents in both models are different from each other and from those in the three-dimensional gauge glass model. In addition, a genuine continuous depinning transition is observed at zero temperature for both models. A scaling analysis for the thermal rounding of the depinning transition shows a non-Arrhenius type creep motion in the vortex glass phase, contrarily to the recent studies..
257 - T. Nattermann , S. Scheidl 2000
A review is given on the theory of vortex-glass phases in impure type-II superconductors in an external field. We begin with a brief discussion of the effects of thermal fluctuations on the spontaneously broken U(1) and translation symmetries, on the global phase diagram and on the critical behaviour. Introducing disorder we restrict ourselves to the experimentally most relevant case of weak uncorrelated randomness which is known to destroy the long-ranged translational order of the Abrikosov lattice in three dimensions. Elucidating possible residual glassy ordered phases, we distinguish betwee positional and phase-coherent vortex glasses. The discussion of elastic vortex glasses, in two and three dimensions occupy the main part of our review. In particular, in three dimensions there exists an elastic vortex-glass phase which still shows quasi-long-range translational order: the `Bragg glass. It is shown that this phase is stable with respect to the formation of dislocations for intermediate fields. Preliminary results suggest that the Bragg-glass phase may not show phase-coherent vortex-glass order. The latter is expected to occur in systems with weak disorder only in higher dimensions. We further demonstrate that the linear resistivity vanishes in the vortex-glass phase. The vortex-glass transition is studied in detail for a superconducting film in a parallel field. Finally, we review some recent developments concerning driven vortex-line lattices moving in a random environment.
We explore the effects of sample dimensionality on vortex pinning in a type-II, low-$T_C$, s-wave superconductor, NbN, in the presence of a perpendicular magnetic field, $H$. We find significant differences in the phase diagrams in the magnetic field --temperature plane between 3-dimensional (3D) and 2-dimensional (2D) NbN films. The differences are most striking close to the normal-superconductor phase transition. We establish that these variances have their origin in the differing pinning properties in two different dimensions. We obtain the pinning strength quantitatively in both the dimensions from two independent transport measurements performed in two different regimes of vortex-motion -- (i) thermally assisted flux-flow (TAFF) regime and (ii) flux flow (FF) regime. Both the measurements consistently show that both the pinning potential and the zero-field free-energy barrier to depinning in the 3D superconductor are at least an order of magnitude stronger than that in the 2D superconductor. Further, we probed the dynamics of pinning in both 2D and 3D superconductor through voltage fluctuation spectroscopy. We find that the mechanism of vortex pinning-depinning is qualitatively similar for the 3D and 2D superconductors. The voltage-fluctuations arising from vortex-motion are found to be correlated only in the 2D superconductor. We establish this to be due to the presence of long-range phase fluctuations near the Berezinskii-Kosterlitz-Thouless (BKT) type superconducting transition in 2-dimensional superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا